CadQueryクラスの概要

このページでは、CadQuery クラスのすべてのメソッドと関数について、アルファベット順に整理して説明しています。

参考

機能分野別の一覧は、 API Reference をご覧ください。

コアクラス

Sketch(parent, locs)

2Dスケッチ。

Workplane(, obj=None))

2次元座標を使用できる空間上の座標系を定義します。

Assembly([obj, loc, name, color, metadata])

WorkplaneとShapeオブジェクトの相対的な位置を定義するネストされたアセンブリ。

Constraint

:py:class:`~cadquery.occ_impl.solver.ConstraintSpec`の別名です。

トポロジカルクラス

Shape(obj)

システム内の形状を表します。

Vertex(obj[, forConstruction])

空間の中の一点

Edge(obj)

面の境界を表すトリミングされた曲線

cadquery.occ_impl.shapes.Mixin1D()

Wire(obj)

接続され、順序付けられた一連のEdgeで、通常、Faceを囲みます。

Face(obj)

固体の境界の一部を表す有界面

Shell(obj)

サーフェスの外側の境界線

cadquery.occ_impl.shapes.Mixin3D()

Solid(obj)

単体

Compound(obj)

切断された固体の集合体

ジオメトリークラス

Vector()

3次元ベクトルを作成する

Matrix()

3d , 4x4 の変換行列。

Plane(origin[, xDir, normal])

空間における2次元座標系

Location()

3D空間での位置。

セレクタクラス

Selector()

オブジェクトのリストにフィルタをかける。

NearestToPointSelector(pnt)

指定された点に最も近いオブジェクトを選択します。

BoxSelector(point0, point1[, boundingbox])

2点で定義された3Dボックス内のオブジェクトを選択します。

BaseDirSelector(vector[, tolerance])

単一の方向ベクトルに基づく選択を処理するセレクタ。

ParallelDirSelector(vector[, tolerance])

指定した方向と平行なオブジェクトを選択します。

DirectionSelector(vector[, tolerance])

指定した方向に並んだオブジェクトを選択します。

PerpendicularDirSelector(vector[, tolerance])

指定した方向と直交するオブジェクトを選択します。

TypeSelector(typeString)

所定のジオメトリタイプを持つオブジェクトを選択します。

RadiusNthSelector(n[, directionMax, tolerance])

N 番目の半径を持つオブジェクトを選択します。

CenterNthSelector(vector, n[, directionMax, ...])

オブジェクトを、指定された方向に投影された中心からの距離によって決まる順序でリストにソートします。

DirectionMinMaxSelector(vector[, ...])

指定した方向に最も近い、または最も遠いオブジェクトを選択します。

DirectionNthSelector(vector, n[, ...])

Filters for objects parallel (or normal) to the specified direction then returns the Nth one.

LengthNthSelector(n[, directionMax, tolerance])

Select the object(s) with the Nth length

AreaNthSelector(n[, directionMax, tolerance])

Selects the object(s) with Nth area

BinarySelector(left, right)

Base class for selectors that operates with two other selectors.

AndSelector(left, right)

Intersection selector.

SumSelector(left, right)

Union selector.

SubtractSelector(left, right)

Difference selector.

InverseSelector(selector)

Inverts the selection of given selector.

StringSyntaxSelector(selectorString)

Filter lists objects using a simple string syntax.

Class Details

class cadquery.Assembly(obj: Optional[Union[Shape, Workplane]] = None, loc: Optional[Location] = None, name: Optional[str] = None, color: Optional[Color] = None, metadata: Optional[Dict[str, Any]] = None)[ソース]

ベースクラス: object

WorkplaneとShapeオブジェクトの相対的な位置を定義するネストされたアセンブリ。

パラメータ:
__init__(obj: Optional[Union[Shape, Workplane]] = None, loc: Optional[Location] = None, name: Optional[str] = None, color: Optional[Color] = None, metadata: Optional[Dict[str, Any]] = None)[ソース]

construct an assembly

パラメータ:
  • obj (Optional[Union[Shape, Workplane]]) -- root object of the assembly (default: None)

  • loc (Optional[Location]) -- location of the root object (default: None, interpreted as identity transformation)

  • name (Optional[str]) -- unique name of the root object (default: None, resulting in an UUID being generated)

  • color (Optional[Color]) -- color of the added object (default: None)

  • metadata (Optional[Dict[str, Any]]) -- a store for user-defined metadata (default: None)

戻り値:

An Assembly object.

To create an empty assembly use:

assy = Assembly(None)

To create one constraint a root object:

b = Workplane().box(1, 1, 1)
assy = Assembly(b, Location(Vector(0, 0, 1)), name="root")
__iter__(loc: Optional[Location] = None, name: Optional[str] = None, color: Optional[Color] = None) Iterator[Tuple[Shape, str, Location, Optional[Color]]][ソース]

Assembly iterator yielding shapes, names, locations and colors.

パラメータ:
  • loc (Optional[Location]) --

  • name (Optional[str]) --

  • color (Optional[Color]) --

戻り値の型:

Iterator[Tuple[Shape, str, Location, Optional[Color]]]

__weakref__

list of weak references to the object (if defined)

add(obj: Assembly, loc: Optional[Location] = None, name: Optional[str] = None, color: Optional[Color] = None) Assembly[ソース]
add(obj: Optional[Union[Shape, Workplane]], loc: Optional[Location] = None, name: Optional[str] = None, color: Optional[Color] = None, metadata: Optional[Dict[str, Any]] = None) Assembly

Add a subassembly to the current assembly.

constrain(q1: str, q2: str, kind: Literal['Plane', 'Point', 'Axis', 'PointInPlane', 'Fixed', 'FixedPoint', 'FixedAxis', 'PointOnLine', 'FixedRotation'], param: Any = None) Assembly[ソース]
constrain(q1: str, kind: Literal['Plane', 'Point', 'Axis', 'PointInPlane', 'Fixed', 'FixedPoint', 'FixedAxis', 'PointOnLine', 'FixedRotation'], param: Any = None) Assembly
constrain(id1: str, s1: Shape, id2: str, s2: Shape, kind: Literal['Plane', 'Point', 'Axis', 'PointInPlane', 'Fixed', 'FixedPoint', 'FixedAxis', 'PointOnLine', 'FixedRotation'], param: Any = None) Assembly
constrain(id1: str, s1: Shape, kind: Literal['Plane', 'Point', 'Axis', 'PointInPlane', 'Fixed', 'FixedPoint', 'FixedAxis', 'PointOnLine', 'FixedRotation'], param: Any = None) Assembly

Define a new constraint.

save(path: str, exportType: Optional[Literal['STEP', 'XML', 'GLTF', 'VTKJS', 'VRML', 'STL']] = None, mode: Literal['default', 'fused'] = 'default', tolerance: float = 0.1, angularTolerance: float = 0.1, **kwargs) Assembly[ソース]

Save assembly to a file.

パラメータ:
  • path (str) -- Path and filename for writing.

  • exportType (Optional[Literal['STEP', 'XML', 'GLTF', 'VTKJS', 'VRML', 'STL']]) -- export format (default: None, results in format being inferred form the path)

  • mode (Literal['default', 'fused']) -- STEP only - See exportAssembly().

  • tolerance (float) -- the deflection tolerance, in model units. Only used for glTF, VRML. Default 0.1.

  • angularTolerance (float) -- the angular tolerance, in radians. Only used for glTF, VRML. Default 0.1.

  • **kwargs -- Additional keyword arguments. Only used for STEP, glTF and STL. See exportAssembly().

  • ascii (bool) -- STL only - Sets whether or not STL export should be text or binary

戻り値の型:

Assembly

property shapes: List[Shape]

List of Shape objects in the .obj field

solve(verbosity: int = 0) Assembly[ソース]

Solve the constraints.

パラメータ:

verbosity (int) --

戻り値の型:

Assembly

toCompound() Compound[ソース]

Returns a Compound made from this Assembly (including all children) with the current Locations applied. Usually this method would only be used after solving.

戻り値の型:

Compound

traverse() Iterator[Tuple[str, Assembly]][ソース]

Yield (name, child) pairs in a bottom-up manner

戻り値の型:

Iterator[Tuple[str, Assembly]]

class cadquery.BoundBox(bb: Bnd_Box)[ソース]

ベースクラス: object

A BoundingBox for an object or set of objects. Wraps the OCP one

パラメータ:

bb (Bnd_Box) --

__init__(bb: Bnd_Box) None[ソース]
パラメータ:

bb (Bnd_Box) --

戻り値の型:

None

__weakref__

list of weak references to the object (if defined)

add(obj: Union[Tuple[float, float, float], Vector, BoundBox], tol: Optional[float] = None) BoundBox[ソース]

Returns a modified (expanded) bounding box

obj can be one of several things:
  1. a 3-tuple corresponding to x,y, and z amounts to add

  2. a vector, containing the x,y,z values to add

  3. another bounding box, where a new box will be created that encloses both.

This bounding box is not changed.

パラメータ:
  • obj (Union[Tuple[float, float, float], Vector, BoundBox]) --

  • tol (Optional[float]) --

戻り値の型:

BoundBox

enlarge(tol: float) BoundBox[ソース]

Returns a modified (expanded) bounding box, expanded in all directions by the tolerance value.

This means that the minimum values of its X, Y and Z intervals of the bounding box are reduced by the absolute value of tol, while the maximum values are increased by the same amount.

パラメータ:

tol (float) --

戻り値の型:

BoundBox

static findOutsideBox2D(bb1: BoundBox, bb2: BoundBox) Optional[BoundBox][ソース]

Compares bounding boxes

Compares bounding boxes. Returns none if neither is inside the other. Returns the outer one if either is outside the other.

BoundBox.isInside works in 3d, but this is a 2d bounding box, so it doesn't work correctly plus, there was all kinds of rounding error in the built-in implementation i do not understand.

パラメータ:
戻り値の型:

Optional[BoundBox]

isInside(b2: BoundBox) bool[ソース]

Is the provided bounding box inside this one?

パラメータ:

b2 (BoundBox) --

戻り値の型:

bool

cadquery.CQ

:py:class:`~cadquery.cq.Workplane`の別名です。

class cadquery.Color(name: str)[ソース]
class cadquery.Color(r: float, g: float, b: float, a: float = 0)
class cadquery.Color

ベースクラス: object

Wrapper for the OCCT color object Quantity_ColorRGBA.

__init__(name: str)[ソース]
__init__(r: float, g: float, b: float, a: float = 0)
__init__()
__weakref__

list of weak references to the object (if defined)

toTuple() Tuple[float, float, float, float][ソース]

Convert Color to RGB tuple.

戻り値の型:

Tuple[float, float, float, float]

class cadquery.Compound(obj: TopoDS_Shape)[ソース]

ベースクラス: Shape, Mixin3D

切断された固体の集合体

パラメータ:

obj (TopoDS_Shape) --

__bool__() bool[ソース]

Check if empty.

戻り値の型:

bool

ancestors(shape: Shape, kind: Literal['Vertex', 'Edge', 'Wire', 'Face', 'Shell', 'Solid', 'CompSolid', 'Compound']) Compound[ソース]

Iterate over ancestors, i.e. shapes of same kind within shape that contain elements of self.

パラメータ:
  • shape (Shape) --

  • kind (Literal['Vertex', 'Edge', 'Wire', 'Face', 'Shell', 'Solid', 'CompSolid', 'Compound']) --

戻り値の型:

Compound

cut(*toCut: Shape, tol: Optional[float] = None) Compound[ソース]

Remove the positional arguments from this Shape.

パラメータ:
  • tol (Optional[float]) -- Fuzzy mode tolerance

  • toCut (Shape) --

戻り値の型:

Compound

fuse(*toFuse: Shape, glue: bool = False, tol: Optional[float] = None) Compound[ソース]

Fuse shapes together

パラメータ:
  • toFuse (Shape) --

  • glue (bool) --

  • tol (Optional[float]) --

戻り値の型:

Compound

intersect(*toIntersect: Shape, tol: Optional[float] = None) Compound[ソース]

Intersection of the positional arguments and this Shape.

パラメータ:
  • tol (Optional[float]) -- Fuzzy mode tolerance

  • toIntersect (Shape) --

戻り値の型:

Compound

classmethod makeCompound(listOfShapes: Iterable[Shape]) Compound[ソース]

Create a compound out of a list of shapes

パラメータ:

listOfShapes (Iterable[Shape]) --

戻り値の型:

Compound

classmethod makeText(text: str, size: float, height: float, font: str = 'Arial', fontPath: Optional[str] = None, kind: Literal['regular', 'bold', 'italic'] = 'regular', halign: Literal['center', 'left', 'right'] = 'center', valign: Literal['center', 'top', 'bottom'] = 'center', position: Plane = Plane(origin=(0.0, 0.0, 0.0), xDir=(1.0, 0.0, 0.0), normal=(0.0, 0.0, 1.0))) Shape[ソース]

Create a 3D text

パラメータ:
  • text (str) --

  • size (float) --

  • height (float) --

  • font (str) --

  • fontPath (Optional[str]) --

  • kind (Literal['regular', 'bold', 'italic']) --

  • halign (Literal['center', 'left', 'right']) --

  • valign (Literal['center', 'top', 'bottom']) --

  • position (Plane) --

戻り値の型:

Shape

remove(shape: Shape)[ソース]

Remove the specified shape.

パラメータ:

shape (Shape) --

siblings(shape: Shape, kind: Literal['Vertex', 'Edge', 'Wire', 'Face', 'Shell', 'Solid', 'CompSolid', 'Compound'], level: int = 1) Compound[ソース]

Iterate over siblings, i.e. shapes within shape that share subshapes of kind with the elements of self.

パラメータ:
  • shape (Shape) --

  • kind (Literal['Vertex', 'Edge', 'Wire', 'Face', 'Shell', 'Solid', 'CompSolid', 'Compound']) --

  • level (int) --

戻り値の型:

Compound

cadquery.Constraint

:py:class:`~cadquery.occ_impl.solver.ConstraintSpec`の別名です。

class cadquery.DirectionMinMaxSelector(vector: Vector, directionMax: bool = True, tolerance: float = 0.0001)[ソース]

ベースクラス: CenterNthSelector

指定した方向に最も近い、または最も遠いオブジェクトを選択します。

Applicability:

All object types. for a vertex, its point is used. for all other kinds of objects, the center of mass of the object is used.

You can use the string shortcuts >(X|Y|Z) or <(X|Y|Z) if you want to select based on a cardinal direction.

For example this:

CQ(aCube).faces(DirectionMinMaxSelector((0, 0, 1), True))

Means to select the face having the center of mass farthest in the positive z direction, and is the same as:

CQ(aCube).faces(">Z")
パラメータ:
  • vector (Vector) --

  • directionMax (bool) --

  • tolerance (float) --

__init__(vector: Vector, directionMax: bool = True, tolerance: float = 0.0001)[ソース]
パラメータ:
  • vector (Vector) --

  • directionMax (bool) --

  • tolerance (float) --

class cadquery.DirectionSelector(vector: Vector, tolerance: float = 0.0001)[ソース]

ベースクラス: BaseDirSelector

指定した方向に並んだオブジェクトを選択します。

Applicability:

Linear Edges Planar Faces

Use the string syntax shortcut +/-(X|Y|Z) if you want to select based on a cardinal direction.

Example:

CQ(aCube).faces(DirectionSelector((0, 0, 1)))

selects faces with the normal in the z direction, and is equivalent to:

CQ(aCube).faces("+Z")
パラメータ:
  • vector (Vector) --

  • tolerance (float) --

test(vec: Vector) bool[ソース]

Test a specified vector. Subclasses override to provide other implementations

パラメータ:

vec (Vector) --

戻り値の型:

bool

class cadquery.Edge(obj: TopoDS_Shape)[ソース]

ベースクラス: Shape, Mixin1D

面の境界を表すトリミングされた曲線

パラメータ:

obj (TopoDS_Shape) --

arcCenter() Vector[ソース]

Center of an underlying circle or ellipse geometry.

戻り値の型:

Vector

close() Union[Edge, Wire][ソース]

Close an Edge

戻り値の型:

Union[Edge, Wire]

classmethod makeBezier(points: List[Vector]) Edge[ソース]

Create a cubic Bézier Curve from the points.

パラメータ:

points (List[Vector]) -- a list of Vectors that represent the points. The edge will pass through the first and the last point, and the inner points are Bézier control points.

戻り値:

An edge

戻り値の型:

Edge

classmethod makeEllipse(x_radius: float, y_radius: float, pnt: ~typing.Union[~cadquery.occ_impl.geom.Vector, ~typing.Tuple[~typing.Union[int, float], ~typing.Union[int, float]], ~typing.Tuple[~typing.Union[int, float], ~typing.Union[int, float], ~typing.Union[int, float]]] = Vector: (0.0, 0.0, 0.0), dir: ~typing.Union[~cadquery.occ_impl.geom.Vector, ~typing.Tuple[~typing.Union[int, float], ~typing.Union[int, float]], ~typing.Tuple[~typing.Union[int, float], ~typing.Union[int, float], ~typing.Union[int, float]]] = Vector: (0.0, 0.0, 1.0), xdir: ~typing.Union[~cadquery.occ_impl.geom.Vector, ~typing.Tuple[~typing.Union[int, float], ~typing.Union[int, float]], ~typing.Tuple[~typing.Union[int, float], ~typing.Union[int, float], ~typing.Union[int, float]]] = Vector: (1.0, 0.0, 0.0), angle1: float = 360.0, angle2: float = 360.0, sense: ~typing.Literal[-1, 1] = 1) Edge[ソース]

Makes an Ellipse centered at the provided point, having normal in the provided direction.

パラメータ:
  • cls --

  • x_radius (float) -- x radius of the ellipse (along the x-axis of plane the ellipse should lie in)

  • y_radius (float) -- y radius of the ellipse (along the y-axis of plane the ellipse should lie in)

  • pnt (Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]]) -- vector representing the center of the ellipse

  • dir (Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]]) -- vector representing the direction of the plane the ellipse should lie in

  • angle1 (float) -- start angle of arc

  • angle2 (float) -- end angle of arc (angle2 == angle1 return closed ellipse = default)

  • sense (Literal[-1, 1]) -- clockwise (-1) or counter clockwise (1)

  • xdir (Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]]) --

戻り値:

an Edge

戻り値の型:

Edge

classmethod makeLine(v1: Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]], v2: Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]]) Edge[ソース]

Create a line between two points

パラメータ:
  • v1 (Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]]) -- Vector that represents the first point

  • v2 (Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]]) -- Vector that represents the second point

戻り値:

A linear edge between the two provided points

戻り値の型:

Edge

classmethod makeSpline(listOfVector: List[Vector], tangents: Optional[Sequence[Vector]] = None, periodic: bool = False, parameters: Optional[Sequence[float]] = None, scale: bool = True, tol: float = 1e-06) Edge[ソース]

Interpolate a spline through the provided points.

パラメータ:
  • listOfVector (List[Vector]) -- a list of Vectors that represent the points

  • tangents (Optional[Sequence[Vector]]) -- tuple of Vectors specifying start and finish tangent

  • periodic (bool) -- creation of periodic curves

  • parameters (Optional[Sequence[float]]) -- the value of the parameter at each interpolation point. (The interpolated curve is represented as a vector-valued function of a scalar parameter.) If periodic == True, then len(parameters) must be len(intepolation points) + 1, otherwise len(parameters) must be equal to len(interpolation points).

  • scale (bool) -- whether to scale the specified tangent vectors before interpolating. Each tangent is scaled, so it's length is equal to the derivative of the Lagrange interpolated curve. I.e., set this to True, if you want to use only the direction of the tangent vectors specified by tangents, but not their magnitude.

  • tol (float) -- tolerance of the algorithm (consult OCC documentation). Used to check that the specified points are not too close to each other, and that tangent vectors are not too short. (In either case interpolation may fail.)

戻り値:

an Edge

戻り値の型:

Edge

classmethod makeSplineApprox(listOfVector: List[Vector], tol: float = 0.001, smoothing: Optional[Tuple[float, float, float]] = None, minDeg: int = 1, maxDeg: int = 6) Edge[ソース]

Approximate a spline through the provided points.

パラメータ:
  • listOfVector (List[Vector]) -- a list of Vectors that represent the points

  • tol (float) -- tolerance of the algorithm (consult OCC documentation).

  • smoothing (Optional[Tuple[float, float, float]]) -- optional tuple of 3 weights use for variational smoothing (default: None)

  • minDeg (int) -- minimum spline degree. Enforced only when smothing is None (default: 1)

  • maxDeg (int) -- maximum spline degree (default: 6)

戻り値:

an Edge

戻り値の型:

Edge

classmethod makeTangentArc(v1: Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]], v2: Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]], v3: Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]]) Edge[ソース]

Makes a tangent arc from point v1, in the direction of v2 and ends at v3.

パラメータ:
  • cls --

  • v1 (Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]]) -- start vector

  • v2 (Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]]) -- tangent vector

  • v3 (Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]]) -- end vector

戻り値:

an edge

戻り値の型:

Edge

classmethod makeThreePointArc(v1: Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]], v2: Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]], v3: Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]]) Edge[ソース]

Makes a three point arc through the provided points

パラメータ:
  • cls --

  • v1 (Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]]) -- start vector

  • v2 (Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]]) -- middle vector

  • v3 (Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]]) -- end vector

戻り値:

an edge object through the three points

戻り値の型:

Edge

class cadquery.Face(obj: TopoDS_Shape)[ソース]

ベースクラス: Shape

固体の境界の一部を表す有界面

パラメータ:

obj (TopoDS_Shape) --

Center() Vector[ソース]
戻り値:

The point of the center of mass of this Shape

戻り値の型:

Vector

chamfer2D(d: float, vertices: Iterable[Vertex]) Face[ソース]

Apply 2D chamfer to a face

パラメータ:
  • d (float) --

  • vertices (Iterable[Vertex]) --

戻り値の型:

Face

fillet2D(radius: float, vertices: Iterable[Vertex]) Face[ソース]

Apply 2D fillet to a face

パラメータ:
  • radius (float) --

  • vertices (Iterable[Vertex]) --

戻り値の型:

Face

classmethod makeFromWires(outerWire: Wire, innerWires: List[Wire] = []) Face[ソース]

Makes a planar face from one or more wires

パラメータ:
  • outerWire (Wire) --

  • innerWires (List[Wire]) --

戻り値の型:

Face

classmethod makeNSidedSurface(edges: ~typing.Iterable[~typing.Union[~cadquery.occ_impl.shapes.Edge, ~cadquery.occ_impl.shapes.Wire]], constraints: ~typing.Iterable[~typing.Union[~cadquery.occ_impl.shapes.Edge, ~cadquery.occ_impl.shapes.Wire, ~cadquery.occ_impl.geom.Vector, ~typing.Tuple[~typing.Union[int, float], ~typing.Union[int, float]], ~typing.Tuple[~typing.Union[int, float], ~typing.Union[int, float], ~typing.Union[int, float]], ~OCP.gp.gp_Pnt]], continuity: ~OCP.GeomAbs.GeomAbs_Shape = <GeomAbs_Shape.GeomAbs_C0: 0>, degree: int = 3, nbPtsOnCur: int = 15, nbIter: int = 2, anisotropy: bool = False, tol2d: float = 1e-05, tol3d: float = 0.0001, tolAng: float = 0.01, tolCurv: float = 0.1, maxDeg: int = 8, maxSegments: int = 9) Face[ソース]

Returns a surface enclosed by a closed polygon defined by 'edges' and 'constraints'.

パラメータ:
  • edges (list of edges or wires) -- edges

  • constraints (list of points or edges) -- constraints

  • continuity (GeomAbs_Shape) -- OCC.Core.GeomAbs continuity condition

  • degree (int) -- >=2

  • nbPtsOnCur (int) -- number of points on curve >= 15

  • nbIter (int) -- number of iterations >= 2

  • anisotropy (bool) -- bool Anisotropy

  • tol2d (float) -- 2D tolerance >0

  • tol3d (float) -- 3D tolerance >0

  • tolAng (float) -- angular tolerance

  • tolCurv (float) -- tolerance for curvature >0

  • maxDeg (int) -- highest polynomial degree >= 2

  • maxSegments (int) -- greatest number of segments >= 2

戻り値の型:

Face

classmethod makeRuledSurface(edgeOrWire1: Edge, edgeOrWire2: Edge) Face[ソース]
classmethod makeRuledSurface(edgeOrWire1: Wire, edgeOrWire2: Wire) Face

makeRuledSurface(Edge|Wire,Edge|Wire) -- Make a ruled surface Create a ruled surface out of two edges or wires. If wires are used then these must have the same number of edges

classmethod makeSplineApprox(points: List[List[Vector]], tol: float = 0.01, smoothing: Optional[Tuple[float, float, float]] = None, minDeg: int = 1, maxDeg: int = 3) Face[ソース]

Approximate a spline surface through the provided points.

パラメータ:
  • points (List[List[Vector]]) -- a 2D list of Vectors that represent the points

  • tol (float) -- tolerance of the algorithm (consult OCC documentation).

  • smoothing (Optional[Tuple[float, float, float]]) -- optional tuple of 3 weights use for variational smoothing (default: None)

  • minDeg (int) -- minimum spline degree. Enforced only when smothing is None (default: 1)

  • maxDeg (int) -- maximum spline degree (default: 6)

戻り値の型:

Face

normalAt(locationVector: Optional[Vector] = None) Vector[ソース]

Computes the normal vector at the desired location on the face.

戻り値:

a vector representing the direction

パラメータ:

locationVector (a vector that lies on the surface.) -- the location to compute the normal at. If none, the center of the face is used.

戻り値の型:

Vector

thicken(thickness: float) Solid[ソース]

Return a thickened face

パラメータ:

thickness (float) --

戻り値の型:

Solid

toArcs(tolerance: float = 0.001) Face[ソース]

Approximate planar face with arcs and straight line segments.

パラメータ:

tolerance (float) -- Approximation tolerance.

戻り値の型:

Face

toPln() gp_Pln[ソース]

Convert this face to a gp_Pln.

Note the Location of the resulting plane may not equal the center of this face, however the resulting plane will still contain the center of this face.

戻り値の型:

gp_Pln

class cadquery.Location[ソース]
class cadquery.Location(t: Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]])
class cadquery.Location(t: Plane)
class cadquery.Location(t: Plane, v: Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]])
class cadquery.Location(t: TopLoc_Location)
class cadquery.Location(t: gp_Trsf)
class cadquery.Location(t: Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]], ax: Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]], angle: float)

ベースクラス: object

Location in 3D space. Depending on usage can be absolute or relative.

This class wraps the TopLoc_Location class from OCCT. It can be used to move Shape objects in both relative and absolute manner. It is the preferred type to locate objects in CQ.

__init__() None[ソース]
__init__(t: Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]]) None
__init__(t: Plane) None
__init__(t: Plane, v: Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]]) None
__init__(t: TopLoc_Location) None
__init__(t: gp_Trsf) None
__init__(t: Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]], ax: Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]], angle: float) None
__weakref__

list of weak references to the object (if defined)

toTuple() Tuple[Tuple[float, float, float], Tuple[float, float, float]][ソース]

Convert the location to a translation, rotation tuple.

戻り値の型:

Tuple[Tuple[float, float, float], Tuple[float, float, float]]

class cadquery.Matrix[ソース]
class cadquery.Matrix(matrix: Union[gp_GTrsf, gp_Trsf])
class cadquery.Matrix(matrix: Sequence[Sequence[float]])

ベースクラス: object

3d , 4x4 の変換行列。

Used to move geometry in space.

The provided "matrix" parameter may be None, a gp_GTrsf, or a nested list of values.

If given a nested list, it is expected to be of the form:

[[m11, m12, m13, m14],

[m21, m22, m23, m24], [m31, m32, m33, m34]]

A fourth row may be given, but it is expected to be: [0.0, 0.0, 0.0, 1.0] since this is a transform matrix.

__getitem__(rc: Tuple[int, int]) float[ソース]

Provide Matrix[r, c] syntax for accessing individual values. The row and column parameters start at zero, which is consistent with most python libraries, but is counter to gp_GTrsf(), which is 1-indexed.

パラメータ:

rc (Tuple[int, int]) --

戻り値の型:

float

__init__() None[ソース]
__init__(matrix: Union[gp_GTrsf, gp_Trsf]) None
__init__(matrix: Sequence[Sequence[float]]) None
__repr__() str[ソース]

Generate a valid python expression representing this Matrix

戻り値の型:

str

__weakref__

list of weak references to the object (if defined)

transposed_list() Sequence[float][ソース]

Needed by the cqparts gltf exporter

戻り値の型:

Sequence[float]

class cadquery.NearestToPointSelector(pnt)[ソース]

ベースクラス: Selector

指定された点に最も近いオブジェクトを選択します。

If the object is a vertex or point, the distance is used. For other kinds of shapes, the center of mass is used to to compute which is closest.

Applicability: All Types of Shapes

Example:

CQ(aCube).vertices(NearestToPointSelector((0, 1, 0)))

returns the vertex of the unit cube closest to the point x=0,y=1,z=0

__init__(pnt)[ソース]
filter(objectList: Sequence[Shape])[ソース]

Filter the provided list.

The default implementation returns the original list unfiltered.

パラメータ:

objectList (list of OCCT primitives) -- list to filter

戻り値:

filtered list

class cadquery.ParallelDirSelector(vector: Vector, tolerance: float = 0.0001)[ソース]

ベースクラス: BaseDirSelector

指定した方向と平行なオブジェクトを選択します。

Applicability:

Linear Edges Planar Faces

Use the string syntax shortcut |(X|Y|Z) if you want to select based on a cardinal direction.

Example:

CQ(aCube).faces(ParallelDirSelector((0, 0, 1)))

selects faces with the normal parallel to the z direction, and is equivalent to:

CQ(aCube).faces("|Z")
パラメータ:
  • vector (Vector) --

  • tolerance (float) --

test(vec: Vector) bool[ソース]

Test a specified vector. Subclasses override to provide other implementations

パラメータ:

vec (Vector) --

戻り値の型:

bool

class cadquery.PerpendicularDirSelector(vector: Vector, tolerance: float = 0.0001)[ソース]

ベースクラス: BaseDirSelector

指定した方向と直交するオブジェクトを選択します。

Applicability:

Linear Edges Planar Faces

Use the string syntax shortcut #(X|Y|Z) if you want to select based on a cardinal direction.

Example:

CQ(aCube).faces(PerpendicularDirSelector((0, 0, 1)))

selects faces with the normal perpendicular to the z direction, and is equivalent to:

CQ(aCube).faces("#Z")
パラメータ:
  • vector (Vector) --

  • tolerance (float) --

test(vec: Vector) bool[ソース]

Test a specified vector. Subclasses override to provide other implementations

パラメータ:

vec (Vector) --

戻り値の型:

bool

class cadquery.Plane(origin: Union[Tuple[float, float, float], Vector], xDir: Optional[Union[Tuple[float, float, float], Vector]] = None, normal: Union[Tuple[float, float, float], Vector] = (0, 0, 1))[ソース]

ベースクラス: object

空間における2次元座標系

A 2D coordinate system in space, with the x-y axes on the plane, and a particular point as the origin.

A plane allows the use of 2D coordinates, which are later converted to global, 3d coordinates when the operations are complete.

Frequently, it is not necessary to create work planes, as they can be created automatically from faces.

パラメータ:
  • origin (Union[Tuple[float, float, float], Vector]) --

  • xDir (Vector) --

  • normal (Union[Tuple[float, float, float], Vector]) --

__eq__(other)[ソース]

Return self==value.

__hash__ = None
__init__(origin: Union[Tuple[float, float, float], Vector], xDir: Optional[Union[Tuple[float, float, float], Vector]] = None, normal: Union[Tuple[float, float, float], Vector] = (0, 0, 1))[ソース]

Create a Plane with an arbitrary orientation

パラメータ:
  • origin (Union[Tuple[float, float, float], Vector]) -- the origin in global coordinates

  • xDir (Optional[Union[Tuple[float, float, float], Vector]]) -- an optional vector representing the xDirection.

  • normal (Union[Tuple[float, float, float], Vector]) -- the normal direction for the plane

例外:

ValueError -- if the specified xDir is not orthogonal to the provided normal

__ne__(other)[ソース]

Return self!=value.

__repr__()[ソース]

Return repr(self).

__weakref__

list of weak references to the object (if defined)

classmethod named(stdName: str, origin=(0, 0, 0)) Plane[ソース]

Create a predefined Plane based on the conventional names.

パラメータ:
  • stdName (string) -- one of (XY|YZ|ZX|XZ|YX|ZY|front|back|left|right|top|bottom)

  • origin (3-tuple of the origin of the new plane, in global coordinates.) -- the desired origin, specified in global coordinates

戻り値の型:

Plane

Available named planes are as follows. Direction references refer to the global directions.

Name

xDir

yDir

zDir

XY

+x

+y

+z

YZ

+y

+z

+x

ZX

+z

+x

+y

XZ

+x

+z

-y

YX

+y

+x

-z

ZY

+z

+y

-x

front

+x

+y

+z

back

-x

+y

-z

left

+z

+y

-x

right

-z

+y

+x

top

+x

-z

+y

bottom

+x

+z

-y

rotated(rotate=(0, 0, 0))[ソース]

Returns a copy of this plane, rotated about the specified axes

Since the z axis is always normal the plane, rotating around Z will always produce a plane that is parallel to this one.

The origin of the workplane is unaffected by the rotation.

Rotations are done in order x, y, z. If you need a different order, manually chain together multiple rotate() commands.

パラメータ:

rotate -- Vector [xDegrees, yDegrees, zDegrees]

戻り値:

a copy of this plane rotated as requested.

setOrigin2d(x, y)[ソース]

Set a new origin in the plane itself

Set a new origin in the plane itself. The plane's orientation and xDrection are unaffected.

パラメータ:
  • x (float) -- offset in the x direction

  • y (float) -- offset in the y direction

戻り値:

void

The new coordinates are specified in terms of the current 2D system. As an example:

p = Plane.XY() p.setOrigin2d(2, 2) p.setOrigin2d(2, 2)

results in a plane with its origin at (x, y) = (4, 4) in global coordinates. Both operations were relative to local coordinates of the plane.

toLocalCoords(obj)[ソース]

Project the provided coordinates onto this plane

パラメータ:

obj -- an object or vector to convert

戻り値:

an object of the same type, but converted to local coordinates

Most of the time, the z-coordinate returned will be zero, because most operations based on a plane are all 2D. Occasionally, though, 3D points outside of the current plane are transformed. One such example is Workplane.box(), where 3D corners of a box are transformed to orient the box in space correctly.

toWorldCoords(tuplePoint) Vector[ソース]

Convert a point in local coordinates to global coordinates

パラメータ:

tuplePoint (a 2 or three tuple of float. The third value is taken to be zero if not supplied.) -- point in local coordinates to convert.

戻り値:

a Vector in global coordinates

戻り値の型:

Vector

class cadquery.Selector[ソース]

ベースクラス: object

オブジェクトのリストにフィルタをかける。

Filters must provide a single method that filters objects.

__weakref__

list of weak references to the object (if defined)

filter(objectList: Sequence[Shape]) List[Shape][ソース]

Filter the provided list.

The default implementation returns the original list unfiltered.

パラメータ:

objectList (list of OCCT primitives) -- list to filter

戻り値:

filtered list

戻り値の型:

List[Shape]

class cadquery.Shape(obj: TopoDS_Shape)[ソース]

ベースクラス: object

Represents a shape in the system. Wraps TopoDS_Shape.

パラメータ:

obj (TopoDS_Shape) --

Area() float[ソース]
戻り値:

The surface area of all faces in this Shape

戻り値の型:

float

BoundingBox(tolerance: Optional[float] = None) BoundBox[ソース]

Create a bounding box for this Shape.

パラメータ:

tolerance (Optional[float]) -- Tolerance value passed to BoundBox

戻り値:

A BoundBox object for this Shape

戻り値の型:

BoundBox

Center() Vector[ソース]
戻り値:

The point of the center of mass of this Shape

戻り値の型:

Vector

CenterOfBoundBox(tolerance: Optional[float] = None) Vector[ソース]
パラメータ:

tolerance (Optional[float]) -- Tolerance passed to the BoundingBox() method

戻り値:

Center of the bounding box of this shape

戻り値の型:

Vector

Closed() bool[ソース]
戻り値:

The closedness flag

戻り値の型:

bool

static CombinedCenter(objects: Iterable[Shape]) Vector[ソース]

Calculates the center of mass of multiple objects.

パラメータ:

objects (Iterable[Shape]) -- A list of objects with mass

戻り値の型:

Vector

static CombinedCenterOfBoundBox(objects: List[Shape]) Vector[ソース]

Calculates the center of a bounding box of multiple objects.

パラメータ:

objects (List[Shape]) -- A list of objects

戻り値の型:

Vector

CompSolids() List[CompSolid][ソース]
戻り値:

All the compsolids in this Shape

戻り値の型:

List[CompSolid]

Compounds() List[Compound][ソース]
戻り値:

All the compounds in this Shape

戻り値の型:

List[Compound]

Edges() List[Edge][ソース]
戻り値:

All the edges in this Shape

戻り値の型:

List[Edge]

Faces() List[Face][ソース]
戻り値:

All the faces in this Shape

戻り値の型:

List[Face]

Shells() List[Shell][ソース]
戻り値:

All the shells in this Shape

戻り値の型:

List[Shell]

Solids() List[Solid][ソース]
戻り値:

All the solids in this Shape

戻り値の型:

List[Solid]

Vertices() List[Vertex][ソース]
戻り値:

All the vertices in this Shape

戻り値の型:

List[Vertex]

Volume() float[ソース]
戻り値:

The volume of this Shape

戻り値の型:

float

Wires() List[Wire][ソース]
戻り値:

All the wires in this Shape

戻り値の型:

List[Wire]

__eq__(other) bool[ソース]

Return self==value.

戻り値の型:

bool

__hash__() int[ソース]

Return hash(self).

戻り値の型:

int

__init__(obj: TopoDS_Shape)[ソース]
パラメータ:

obj (TopoDS_Shape) --

__iter__() Iterator[Shape][ソース]

Iterate over subshapes.

戻り値の型:

Iterator[Shape]

__weakref__

list of weak references to the object (if defined)

ancestors(shape: Shape, kind: Literal['Vertex', 'Edge', 'Wire', 'Face', 'Shell', 'Solid', 'CompSolid', 'Compound']) Compound[ソース]

Iterate over ancestors, i.e. shapes of same kind within shape that contain self.

パラメータ:
  • shape (Shape) --

  • kind (Literal['Vertex', 'Edge', 'Wire', 'Face', 'Shell', 'Solid', 'CompSolid', 'Compound']) --

戻り値の型:

Compound

classmethod cast(obj: TopoDS_Shape, forConstruction: bool = False) Shape[ソース]

Returns the right type of wrapper, given a OCCT object

パラメータ:
  • obj (TopoDS_Shape) --

  • forConstruction (bool) --

戻り値の型:

Shape

static centerOfMass(obj: Shape) Vector[ソース]

Calculates the center of 'mass' of an object.

パラメータ:

obj (Shape) -- Compute the center of mass of this object

戻り値の型:

Vector

clean() T[ソース]

Experimental clean using ShapeUpgrade

パラメータ:

self (T) --

戻り値の型:

T

static computeMass(obj: Shape) float[ソース]

Calculates the 'mass' of an object.

パラメータ:

obj (Shape) -- Compute the mass of this object

戻り値の型:

float

copy(mesh: bool = False) T[ソース]

Creates a new object that is a copy of this object.

パラメータ:
  • mesh (bool) -- should I copy the triangulation too (default: False)

  • self (T) --

戻り値:

a copy of the object

戻り値の型:

T

cut(*toCut: Shape, tol: Optional[float] = None) Shape[ソース]

Remove the positional arguments from this Shape.

パラメータ:
  • tol (Optional[float]) -- Fuzzy mode tolerance

  • toCut (Shape) --

戻り値の型:

Shape

distance(other: Shape) float[ソース]

Minimal distance between two shapes

パラメータ:

other (Shape) --

戻り値の型:

float

distances(*others: Shape) Iterator[float][ソース]

Minimal distances to between self and other shapes

パラメータ:

others (Shape) --

戻り値の型:

Iterator[float]

edges(selector: Optional[Union[str, Selector]] = None) Shape[ソース]

Select edges.

パラメータ:

selector (Optional[Union[str, Selector]]) --

戻り値の型:

Shape

exportBrep(f: Union[str, BytesIO]) bool[ソース]

Export this shape to a BREP file

パラメータ:

f (Union[str, BytesIO]) --

戻り値の型:

bool

exportStep(fileName: str, **kwargs) IFSelect_ReturnStatus[ソース]

Export this shape to a STEP file.

kwargs is used to provide optional keyword arguments to configure the exporter.

パラメータ:
  • fileName (str) -- Path and filename for writing.

  • write_pcurves (bool) --

    Enable or disable writing parametric curves to the STEP file. Default True.

    If False, writes STEP file without pcurves. This decreases the size of the resulting STEP file.

  • precision_mode (int) -- Controls the uncertainty value for STEP entities. Specify -1, 0, or 1. Default 0. See OCCT documentation.

戻り値の型:

IFSelect_ReturnStatus

exportStl(fileName: str, tolerance: float = 0.001, angularTolerance: float = 0.1, ascii: bool = False, relative: bool = True, parallel: bool = True) bool[ソース]

Exports a shape to a specified STL file.

パラメータ:
  • fileName (str) -- The path and file name to write the STL output to.

  • tolerance (float) -- A linear deflection setting which limits the distance between a curve and its tessellation. Setting this value too low will result in large meshes that can consume computing resources. Setting the value too high can result in meshes with a level of detail that is too low. Default is 1e-3, which is a good starting point for a range of cases.

  • angularTolerance (float) -- Angular deflection setting which limits the angle between subsequent segments in a polyline. Default is 0.1.

  • ascii (bool) -- Export the file as ASCII (True) or binary (False) STL format. Default is binary.

  • relative (bool) -- If True, tolerance will be scaled by the size of the edge being meshed. Default is True. Setting this value to True may cause large features to become faceted, or small features dense.

  • parallel (bool) -- If True, OCCT will use parallel processing to mesh the shape. Default is True.

戻り値の型:

bool

faces(selector: Optional[Union[str, Selector]] = None) Shape[ソース]

Select faces.

パラメータ:

selector (Optional[Union[str, Selector]]) --

戻り値の型:

Shape

facesIntersectedByLine(point: Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]], axis: Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]], tol: float = 0.0001, direction: Optional[Literal['AlongAxis', 'Opposite']] = None)[ソース]

Computes the intersections between the provided line and the faces of this Shape

パラメータ:
  • point (Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]]) -- Base point for defining a line

  • axis (Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]]) -- Axis on which the line rests

  • tol (float) -- Intersection tolerance

  • direction (Optional[Literal['AlongAxis', 'Opposite']]) -- Valid values: "AlongAxis", "Opposite"; If specified, will ignore all faces that are not in the specified direction including the face where the point lies if it is the case

戻り値:

A list of intersected faces sorted by distance from point

fix() T[ソース]

Try to fix shape if not valid

パラメータ:

self (T) --

戻り値の型:

T

fuse(*toFuse: Shape, glue: bool = False, tol: Optional[float] = None) Shape[ソース]

Fuse the positional arguments with this Shape.

パラメータ:
  • glue (bool) -- Sets the glue option for the algorithm, which allows increasing performance of the intersection of the input shapes

  • tol (Optional[float]) -- Fuzzy mode tolerance

  • toFuse (Shape) --

戻り値の型:

Shape

geomType() Literal['Vertex', 'Wire', 'Shell', 'Solid', 'Compound', 'PLANE', 'CYLINDER', 'CONE', 'SPHERE', 'TORUS', 'BEZIER', 'BSPLINE', 'REVOLUTION', 'EXTRUSION', 'OFFSET', 'OTHER', 'LINE', 'CIRCLE', 'ELLIPSE', 'HYPERBOLA', 'PARABOLA'][ソース]

Gets the underlying geometry type.

Implementations can return any values desired, but the values the user uses in type filters should correspond to these.

As an example, if a user does:

CQ(object).faces("%mytype")

The expectation is that the geomType attribute will return 'mytype'

The return values depend on the type of the shape:

Vertex: always 'Vertex'
Edge: LINE, CIRCLE, ELLIPSE, HYPERBOLA, PARABOLA, BEZIER,
BSPLINE, OFFSET, OTHER
Face: PLANE, CYLINDER, CONE, SPHERE, TORUS, BEZIER, BSPLINE,
REVOLUTION, EXTRUSION, OFFSET, OTHER
Solid: 'Solid'
Shell: 'Shell'
Compound: 'Compound'
Wire: 'Wire'
戻り値:

A string according to the geometry type

戻り値の型:

Literal['Vertex', 'Wire', 'Shell', 'Solid', 'Compound', 'PLANE', 'CYLINDER', 'CONE', 'SPHERE', 'TORUS', 'BEZIER', 'BSPLINE', 'REVOLUTION', 'EXTRUSION', 'OFFSET', 'OTHER', 'LINE', 'CIRCLE', 'ELLIPSE', 'HYPERBOLA', 'PARABOLA']

hashCode() int[ソース]

Returns a hashed value denoting this shape. It is computed from the TShape and the Location. The Orientation is not used.

戻り値の型:

int

classmethod importBrep(f: Union[str, BytesIO]) Shape[ソース]

Import shape from a BREP file

パラメータ:

f (Union[str, BytesIO]) --

戻り値の型:

Shape

intersect(*toIntersect: Shape, tol: Optional[float] = None) Shape[ソース]

Intersection of the positional arguments and this Shape.

パラメータ:
  • tol (Optional[float]) -- Fuzzy mode tolerance

  • toIntersect (Shape) --

戻り値の型:

Shape

isEqual(other: Shape) bool[ソース]

Returns True if two shapes are equal, i.e. if they share the same TShape with the same Locations and Orientations. Also see isSame().

パラメータ:

other (Shape) --

戻り値の型:

bool

isNull() bool[ソース]

Returns true if this shape is null. In other words, it references no underlying shape with the potential to be given a location and an orientation.

戻り値の型:

bool

isSame(other: Shape) bool[ソース]

Returns True if other and this shape are same, i.e. if they share the same TShape with the same Locations. Orientations may differ. Also see isEqual()

パラメータ:

other (Shape) --

戻り値の型:

bool

isValid() bool[ソース]

Returns True if no defect is detected on the shape S or any of its subshapes. See the OCCT docs on BRepCheck_Analyzer::IsValid for a full description of what is checked.

戻り値の型:

bool

locate(loc: Location) T[ソース]

Apply a location in absolute sense to self

パラメータ:
戻り値の型:

T

located(loc: Location) T[ソース]

Apply a location in absolute sense to a copy of self

パラメータ:
戻り値の型:

T

location() Location[ソース]

Return the current location

戻り値の型:

Location

static matrixOfInertia(obj: Shape) List[List[float]][ソース]

Calculates the matrix of inertia of an object. :param obj: Compute the matrix of inertia of this object

パラメータ:

obj (Shape) --

戻り値の型:

List[List[float]]

mesh(tolerance: float, angularTolerance: float = 0.1)[ソース]

Generate triangulation if none exists.

パラメータ:
  • tolerance (float) --

  • angularTolerance (float) --

mirror(mirrorPlane: Union[Literal['XY', 'YX', 'XZ', 'ZX', 'YZ', 'ZY'], Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]] = 'XY', basePointVector: Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]] = (0, 0, 0)) Shape[ソース]

Applies a mirror transform to this Shape. Does not duplicate objects about the plane.

パラメータ:
  • mirrorPlane (Union[Literal['XY', 'YX', 'XZ', 'ZX', 'YZ', 'ZY'], Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]]) -- The direction of the plane to mirror about - one of 'XY', 'XZ' or 'YZ'

  • basePointVector (Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]]) -- The origin of the plane to mirror about

戻り値:

The mirrored shape

戻り値の型:

Shape

move(loc: Location) T[ソース]

Apply a location in relative sense (i.e. update current location) to self

パラメータ:
戻り値の型:

T

moved(loc: Location) T[ソース]

Apply a location in relative sense (i.e. update current location) to a copy of self

パラメータ:
戻り値の型:

T

rotate(startVector: Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]], endVector: Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]], angleDegrees: float) T[ソース]

Rotates a shape around an axis.

パラメータ:
  • startVector (either a 3-tuple or a Vector) -- start point of rotation axis

  • endVector (either a 3-tuple or a Vector) -- end point of rotation axis

  • angleDegrees (float) -- angle to rotate, in degrees

  • self (T) --

戻り値:

a copy of the shape, rotated

戻り値の型:

T

scale(factor: float) Shape[ソース]

Scales this shape through a transformation.

パラメータ:

factor (float) --

戻り値の型:

Shape

shells(selector: Optional[Union[str, Selector]] = None) Shape[ソース]

Select shells.

パラメータ:

selector (Optional[Union[str, Selector]]) --

戻り値の型:

Shape

siblings(shape: Shape, kind: Literal['Vertex', 'Edge', 'Wire', 'Face', 'Shell', 'Solid', 'CompSolid', 'Compound'], level: int = 1) Compound[ソース]

Iterate over siblings, i.e. shapes within shape that share subshapes of kind with self.

パラメータ:
  • shape (Shape) --

  • kind (Literal['Vertex', 'Edge', 'Wire', 'Face', 'Shell', 'Solid', 'CompSolid', 'Compound']) --

  • level (int) --

戻り値の型:

Compound

solids(selector: Optional[Union[str, Selector]] = None) Shape[ソース]

Select solids.

パラメータ:

selector (Optional[Union[str, Selector]]) --

戻り値の型:

Shape

split(*splitters: Shape) Shape[ソース]

Split this shape with the positional arguments.

パラメータ:

splitters (Shape) --

戻り値の型:

Shape

toSplines(degree: int = 3, tolerance: float = 0.001, nurbs: bool = False) T[ソース]

Approximate shape with b-splines of the specified degree.

パラメータ:
  • degree (int) -- Maximum degree.

  • tolerance (float) -- Approximation tolerance.

  • nurbs (bool) -- Use rational splines.

  • self (T) --

戻り値の型:

T

toVtkPolyData(tolerance: Optional[float] = None, angularTolerance: Optional[float] = None, normals: bool = False) vtkPolyData[ソース]

Convert shape to vtkPolyData

パラメータ:
  • tolerance (Optional[float]) --

  • angularTolerance (Optional[float]) --

  • normals (bool) --

戻り値の型:

vtkPolyData

transformGeometry(tMatrix: Matrix) Shape[ソース]

Transforms this shape by tMatrix.

WARNING: transformGeometry will sometimes convert lines and circles to splines, but it also has the ability to handle skew and stretching transformations.

If your transformation is only translation and rotation, it is safer to use transformShape(), which doesn't change the underlying type of the geometry, but cannot handle skew transformations.

パラメータ:

tMatrix (Matrix) -- The transformation matrix

戻り値:

a copy of the object, but with geometry transformed instead of just rotated.

戻り値の型:

Shape

transformShape(tMatrix: Matrix) Shape[ソース]

Transforms this Shape by tMatrix. Also see transformGeometry().

パラメータ:

tMatrix (Matrix) -- The transformation matrix

戻り値:

a copy of the object, transformed by the provided matrix, with all objects keeping their type

戻り値の型:

Shape

translate(vector: Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]]) T[ソース]

Translates this shape through a transformation.

パラメータ:
  • self (T) --

  • vector (Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]]) --

戻り値の型:

T

vertices(selector: Optional[Union[str, Selector]] = None) Shape[ソース]

Select vertices.

パラメータ:

selector (Optional[Union[str, Selector]]) --

戻り値の型:

Shape

wires(selector: Optional[Union[str, Selector]] = None) Shape[ソース]

Select wires.

パラメータ:

selector (Optional[Union[str, Selector]]) --

戻り値の型:

Shape

class cadquery.Shell(obj: TopoDS_Shape)[ソース]

ベースクラス: Shape

サーフェスの外側の境界線

パラメータ:

obj (TopoDS_Shape) --

classmethod makeShell(listOfFaces: Iterable[Face]) Shell[ソース]

Makes a shell from faces.

パラメータ:

listOfFaces (Iterable[Face]) --

戻り値の型:

Shell

class cadquery.Sketch(parent: ~typing.Optional[~typing.Any] = None, locs: ~typing.Iterable[~cadquery.occ_impl.geom.Location] = (<cadquery.occ_impl.geom.Location object>, ))[ソース]

ベースクラス: object

2D sketch. Supports faces, edges and edges with constraints based construction.

パラメータ:
  • parent (Any) --

  • locs (List[Location]) --

__init__(parent: ~typing.Optional[~typing.Any] = None, locs: ~typing.Iterable[~cadquery.occ_impl.geom.Location] = (<cadquery.occ_impl.geom.Location object>, ))[ソース]

Construct an empty sketch.

パラメータ:
  • self (T) --

  • parent (Optional[Any]) --

  • locs (Iterable[Location]) --

__iter__() Iterator[Face][ソース]

Iterate over faces-locations combinations.

戻り値の型:

Iterator[Face]

__weakref__

list of weak references to the object (if defined)

arc(p1: Union[Vector, Tuple[Union[int, float], Union[int, float]]], p2: Union[Vector, Tuple[Union[int, float], Union[int, float]]], p3: Union[Vector, Tuple[Union[int, float], Union[int, float]]], tag: Optional[str] = None, forConstruction: bool = False) T[ソース]
arc(p2: Union[Vector, Tuple[Union[int, float], Union[int, float]]], p3: Union[Vector, Tuple[Union[int, float], Union[int, float]]], tag: Optional[str] = None, forConstruction: bool = False) T
arc(c: Union[Vector, Tuple[Union[int, float], Union[int, float]]], r: Union[int, float], a: Union[int, float], da: Union[int, float], tag: Optional[str] = None, forConstruction: bool = False) T

Construct an arc.

パラメータ:
  • self (T) --

  • p1 (Union[Vector, Tuple[Union[int, float], Union[int, float]]]) --

  • p2 (Union[Vector, Tuple[Union[int, float], Union[int, float]]]) --

  • p3 (Union[Vector, Tuple[Union[int, float], Union[int, float]]]) --

  • tag (Optional[str]) --

  • forConstruction (bool) --

戻り値の型:

T

assemble(mode: Literal['a', 's', 'i', 'c'] = 'a', tag: Optional[str] = None) T[ソース]

Assemble edges into faces.

パラメータ:
  • self (T) --

  • mode (Literal['a', 's', 'i', 'c']) --

  • tag (Optional[str]) --

戻り値の型:

T

bezier(pts: Iterable[Union[Vector, Tuple[Union[int, float], Union[int, float]]]], tag: Optional[str] = None, forConstruction: bool = False) T[ソース]

Construct an bezier curve.

The edge will pass through the last points, and the inner points are bezier control points.

パラメータ:
  • self (T) --

  • pts (Iterable[Union[Vector, Tuple[Union[int, float], Union[int, float]]]]) --

  • tag (Optional[str]) --

  • forConstruction (bool) --

戻り値の型:

T

chamfer(d: Union[int, float]) T[ソース]

Add a chamfer based on current selection.

パラメータ:
  • self (T) --

  • d (Union[int, float]) --

戻り値の型:

T

circle(r: Union[int, float], mode: Literal['a', 's', 'i', 'c'] = 'a', tag: Optional[str] = None) T[ソース]

Construct a circular face.

パラメータ:
  • self (T) --

  • r (Union[int, float]) --

  • mode (Literal['a', 's', 'i', 'c']) --

  • tag (Optional[str]) --

戻り値の型:

T

clean() T[ソース]

Remove internal wires.

パラメータ:

self (T) --

戻り値の型:

T

close(tag: Optional[str] = None) T[ソース]

Connect last edge to the first one.

パラメータ:
  • self (T) --

  • tag (Optional[str]) --

戻り値の型:

T

constrain(tag: str, constraint: Literal['Fixed', 'FixedPoint', 'Coincident', 'Angle', 'Length', 'Distance', 'Radius', 'Orientation', 'ArcAngle'], arg: Any) T[ソース]
constrain(tag1: str, tag2: str, constraint: Literal['Fixed', 'FixedPoint', 'Coincident', 'Angle', 'Length', 'Distance', 'Radius', 'Orientation', 'ArcAngle'], arg: Any) T

Add a constraint.

パラメータ:
  • self (T) --

  • tag (str) --

  • constraint (Literal['Fixed', 'FixedPoint', 'Coincident', 'Angle', 'Length', 'Distance', 'Radius', 'Orientation', 'ArcAngle']) --

  • arg (Any) --

戻り値の型:

T

copy() T[ソース]

Create a partial copy of the sketch.

パラメータ:

self (T) --

戻り値の型:

T

delete() T[ソース]

Delete selected object.

パラメータ:

self (T) --

戻り値の型:

T

distribute(n: int, start: Union[int, float] = 0, stop: Union[int, float] = 1, rotate: bool = True) T[ソース]

Distribute locations along selected edges or wires.

パラメータ:
  • self (T) --

  • n (int) --

  • start (Union[int, float]) --

  • stop (Union[int, float]) --

  • rotate (bool) --

戻り値の型:

T

each(callback: Callable[[Location], Union[Face, Sketch, Compound]], mode: Literal['a', 's', 'i', 'c'] = 'a', tag: Optional[str] = None, ignore_selection: bool = False) T[ソース]

Apply a callback on all applicable entities.

パラメータ:
  • self (T) --

  • callback (Callable[[Location], Union[Face, Sketch, Compound]]) --

  • mode (Literal['a', 's', 'i', 'c']) --

  • tag (Optional[str]) --

  • ignore_selection (bool) --

戻り値の型:

T

edge(val: Edge, tag: Optional[str] = None, forConstruction: bool = False) T[ソース]

Add an edge to the sketch.

パラメータ:
  • self (T) --

  • val (Edge) --

  • tag (Optional[str]) --

  • forConstruction (bool) --

戻り値の型:

T

edges(s: Optional[Union[str, Selector]] = None, tag: Optional[str] = None) T[ソース]

Select edges.

パラメータ:
  • self (T) --

  • s (Optional[Union[str, Selector]]) --

  • tag (Optional[str]) --

戻り値の型:

T

ellipse(a1: Union[int, float], a2: Union[int, float], angle: Union[int, float] = 0, mode: Literal['a', 's', 'i', 'c'] = 'a', tag: Optional[str] = None) T[ソース]

Construct an elliptical face.

パラメータ:
  • self (T) --

  • a1 (Union[int, float]) --

  • a2 (Union[int, float]) --

  • angle (Union[int, float]) --

  • mode (Literal['a', 's', 'i', 'c']) --

  • tag (Optional[str]) --

戻り値の型:

T

face(b: Union[Wire, Iterable[Edge], Compound, T], angle: Union[int, float] = 0, mode: Literal['a', 's', 'i', 'c'] = 'a', tag: Optional[str] = None, ignore_selection: bool = False) T[ソース]

Construct a face from a wire or edges.

パラメータ:
  • self (T) --

  • b (Union[Wire, Iterable[Edge], Compound, T]) --

  • angle (Union[int, float]) --

  • mode (Literal['a', 's', 'i', 'c']) --

  • tag (Optional[str]) --

  • ignore_selection (bool) --

戻り値の型:

T

faces(s: Optional[Union[str, Selector]] = None, tag: Optional[str] = None) T[ソース]

Select faces.

パラメータ:
  • self (T) --

  • s (Optional[Union[str, Selector]]) --

  • tag (Optional[str]) --

戻り値の型:

T

fillet(d: Union[int, float]) T[ソース]

Add a fillet based on current selection.

パラメータ:
  • self (T) --

  • d (Union[int, float]) --

戻り値の型:

T

finalize() Any[ソース]

Finish sketch construction and return the parent.

戻り値の型:

Any

hull(mode: Literal['a', 's', 'i', 'c'] = 'a', tag: Optional[str] = None) T[ソース]

Generate a convex hull from current selection or all objects.

パラメータ:
  • self (T) --

  • mode (Literal['a', 's', 'i', 'c']) --

  • tag (Optional[str]) --

戻り値の型:

T

importDXF(filename: str, tol: float = 1e-06, exclude: List[str] = [], include: List[str] = [], angle: Union[int, float] = 0, mode: Literal['a', 's', 'i', 'c'] = 'a', tag: Optional[str] = None) T[ソース]

Import a DXF file and construct face(s)

パラメータ:
  • self (T) --

  • filename (str) --

  • tol (float) --

  • exclude (List[str]) --

  • include (List[str]) --

  • angle (Union[int, float]) --

  • mode (Literal['a', 's', 'i', 'c']) --

  • tag (Optional[str]) --

戻り値の型:

T

located(loc: Location) T[ソース]

Create a partial copy of the sketch with a new location.

パラメータ:
戻り値の型:

T

moved(loc: Location) T[ソース]

Create a partial copy of the sketch with moved _faces.

パラメータ:
戻り値の型:

T

offset(d: Union[int, float], mode: Literal['a', 's', 'i', 'c'] = 'a', tag: Optional[str] = None) T[ソース]

Offset selected wires or edges.

パラメータ:
  • self (T) --

  • d (Union[int, float]) --

  • mode (Literal['a', 's', 'i', 'c']) --

  • tag (Optional[str]) --

戻り値の型:

T

parray(r: Union[int, float], a1: Union[int, float], da: Union[int, float], n: int, rotate: bool = True) T[ソース]

Generate a polar array of locations.

パラメータ:
  • self (T) --

  • r (Union[int, float]) --

  • a1 (Union[int, float]) --

  • da (Union[int, float]) --

  • n (int) --

  • rotate (bool) --

戻り値の型:

T

polygon(pts: Iterable[Union[Vector, Tuple[Union[int, float], Union[int, float]]]], angle: Union[int, float] = 0, mode: Literal['a', 's', 'i', 'c'] = 'a', tag: Optional[str] = None) T[ソース]

Construct a polygonal face.

パラメータ:
  • self (T) --

  • pts (Iterable[Union[Vector, Tuple[Union[int, float], Union[int, float]]]]) --

  • angle (Union[int, float]) --

  • mode (Literal['a', 's', 'i', 'c']) --

  • tag (Optional[str]) --

戻り値の型:

T

push(locs: Iterable[Union[Location, Vector, Tuple[Union[int, float], Union[int, float]]]], tag: Optional[str] = None) T[ソース]

Set current selection to given locations or points.

パラメータ:
  • self (T) --

  • locs (Iterable[Union[Location, Vector, Tuple[Union[int, float], Union[int, float]]]]) --

  • tag (Optional[str]) --

戻り値の型:

T

rarray(xs: Union[int, float], ys: Union[int, float], nx: int, ny: int) T[ソース]

Generate a rectangular array of locations.

パラメータ:
  • self (T) --

  • xs (Union[int, float]) --

  • ys (Union[int, float]) --

  • nx (int) --

  • ny (int) --

戻り値の型:

T

rect(w: Union[int, float], h: Union[int, float], angle: Union[int, float] = 0, mode: Literal['a', 's', 'i', 'c'] = 'a', tag: Optional[str] = None) T[ソース]

Construct a rectangular face.

パラメータ:
  • self (T) --

  • w (Union[int, float]) --

  • h (Union[int, float]) --

  • angle (Union[int, float]) --

  • mode (Literal['a', 's', 'i', 'c']) --

  • tag (Optional[str]) --

戻り値の型:

T

regularPolygon(r: Union[int, float], n: int, angle: Union[int, float] = 0, mode: Literal['a', 's', 'i', 'c'] = 'a', tag: Optional[str] = None) T[ソース]

Construct a regular polygonal face.

パラメータ:
  • self (T) --

  • r (Union[int, float]) --

  • n (int) --

  • angle (Union[int, float]) --

  • mode (Literal['a', 's', 'i', 'c']) --

  • tag (Optional[str]) --

戻り値の型:

T

reset() T[ソース]

Reset current selection.

パラメータ:

self (T) --

戻り値の型:

T

segment(l: Union[int, float], a: Union[int, float], tag: Optional[str] = None, forConstruction: bool = False) T[ソース]
segment(p1: Union[Vector, Tuple[Union[int, float], Union[int, float]]], p2: Union[Vector, Tuple[Union[int, float], Union[int, float]]], tag: Optional[str] = None, forConstruction: bool = False) T
segment(p2: Union[Vector, Tuple[Union[int, float], Union[int, float]]], tag: Optional[str] = None, forConstruction: bool = False) T

Construct a segment.

パラメータ:
  • self (T) --

  • p1 (Union[Vector, Tuple[Union[int, float], Union[int, float]]]) --

  • p2 (Union[Vector, Tuple[Union[int, float], Union[int, float]]]) --

  • tag (Optional[str]) --

  • forConstruction (bool) --

戻り値の型:

T

select(*tags: str) T[ソース]

Select based on tags.

パラメータ:
  • self (T) --

  • tags (str) --

戻り値の型:

T

slot(w: Union[int, float], h: Union[int, float], angle: Union[int, float] = 0, mode: Literal['a', 's', 'i', 'c'] = 'a', tag: Optional[str] = None) T[ソース]

Construct a slot-shaped face.

パラメータ:
  • self (T) --

  • w (Union[int, float]) --

  • h (Union[int, float]) --

  • angle (Union[int, float]) --

  • mode (Literal['a', 's', 'i', 'c']) --

  • tag (Optional[str]) --

戻り値の型:

T

solve() T[ソース]

Solve current constraints and update edge positions.

パラメータ:

self (T) --

戻り値の型:

T

spline(pts: Iterable[Union[Vector, Tuple[Union[int, float], Union[int, float]]]], tangents: Optional[Iterable[Union[Vector, Tuple[Union[int, float], Union[int, float]]]]], periodic: bool, tag: Optional[str] = None, forConstruction: bool = False) T[ソース]
spline(pts: Iterable[Union[Vector, Tuple[Union[int, float], Union[int, float]]]], tag: Optional[str] = None, forConstruction: bool = False) T

Construct a spline edge.

パラメータ:
  • self (T) --

  • pts (Iterable[Union[Vector, Tuple[Union[int, float], Union[int, float]]]]) --

  • tangents (Optional[Iterable[Union[Vector, Tuple[Union[int, float], Union[int, float]]]]]) --

  • periodic (bool) --

  • tag (Optional[str]) --

  • forConstruction (bool) --

戻り値の型:

T

tag(tag: str) T[ソース]

Tag current selection.

パラメータ:
  • self (T) --

  • tag (str) --

戻り値の型:

T

trapezoid(w: Union[int, float], h: Union[int, float], a1: Union[int, float], a2: Optional[float] = None, angle: Union[int, float] = 0, mode: Literal['a', 's', 'i', 'c'] = 'a', tag: Optional[str] = None) T[ソース]

Construct a trapezoidal face.

パラメータ:
  • self (T) --

  • w (Union[int, float]) --

  • h (Union[int, float]) --

  • a1 (Union[int, float]) --

  • a2 (Optional[float]) --

  • angle (Union[int, float]) --

  • mode (Literal['a', 's', 'i', 'c']) --

  • tag (Optional[str]) --

戻り値の型:

T

val() Union[Shape, Location][ソース]

Return the first selected item or Location().

パラメータ:

self (T) --

戻り値の型:

Union[Shape, Location]

vals() List[Union[Shape, Location]][ソース]

Return the list of selected items.

パラメータ:

self (T) --

戻り値の型:

List[Union[Shape, Location]]

vertices(s: Optional[Union[str, Selector]] = None, tag: Optional[str] = None) T[ソース]

Select vertices.

パラメータ:
  • self (T) --

  • s (Optional[Union[str, Selector]]) --

  • tag (Optional[str]) --

戻り値の型:

T

wires(s: Optional[Union[str, Selector]] = None, tag: Optional[str] = None) T[ソース]

Select wires.

パラメータ:
  • self (T) --

  • s (Optional[Union[str, Selector]]) --

  • tag (Optional[str]) --

戻り値の型:

T

class cadquery.Solid(obj: TopoDS_Shape)[ソース]

ベースクラス: Shape, Mixin3D

単体

パラメータ:

obj (TopoDS_Shape) --

classmethod extrudeLinear(outerWire: Wire, innerWires: List[Wire], vecNormal: Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]], taper: Union[float, int] = 0) Solid[ソース]
classmethod extrudeLinear(face: Face, vecNormal: Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]], taper: Union[float, int] = 0) Solid

Attempt to extrude the list of wires into a prismatic solid in the provided direction

パラメータ:
  • outerWire (Wire) -- the outermost wire

  • innerWires (List[Wire]) -- a list of inner wires

  • vecNormal (Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]]) -- a vector along which to extrude the wires

  • taper (Union[float, int]) -- taper angle, default=0

戻り値:

a Solid object

戻り値の型:

Solid

The wires must not intersect

Extruding wires is very non-trivial. Nested wires imply very different geometry, and there are many geometries that are invalid. In general, the following conditions must be met:

  • all wires must be closed

  • there cannot be any intersecting or self-intersecting wires

  • wires must be listed from outside in

  • more than one levels of nesting is not supported reliably

This method will attempt to sort the wires, but there is much work remaining to make this method reliable.

classmethod extrudeLinearWithRotation(outerWire: Wire, innerWires: List[Wire], vecCenter: Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]], vecNormal: Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]], angleDegrees: Union[float, int]) Solid[ソース]
classmethod extrudeLinearWithRotation(face: Face, vecCenter: Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]], vecNormal: Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]], angleDegrees: Union[float, int]) Solid

Creates a 'twisted prism' by extruding, while simultaneously rotating around the extrusion vector.

Though the signature may appear to be similar enough to extrudeLinear to merit combining them, the construction methods used here are different enough that they should be separate.

At a high level, the steps followed are:

  1. accept a set of wires

  2. create another set of wires like this one, but which are transformed and rotated

  3. create a ruledSurface between the sets of wires

  4. create a shell and compute the resulting object

パラメータ:
  • outerWire (Wire) -- the outermost wire

  • innerWires (List[Wire]) -- a list of inner wires

  • vecCenter (Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]]) -- the center point about which to rotate. the axis of rotation is defined by vecNormal, located at vecCenter.

  • vecNormal (Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]]) -- a vector along which to extrude the wires

  • angleDegrees (Union[float, int]) -- the angle to rotate through while extruding

戻り値:

a Solid object

戻り値の型:

Solid

classmethod interpPlate(surf_edges, surf_pts, thickness, degree=3, nbPtsOnCur=15, nbIter=2, anisotropy=False, tol2d=1e-05, tol3d=0.0001, tolAng=0.01, tolCurv=0.1, maxDeg=8, maxSegments=9) Union[Solid, Face][ソース]

Returns a plate surface that is 'thickness' thick, enclosed by 'surf_edge_pts' points, and going through 'surf_pts' points.

パラメータ:
  • surf_edges -- list of [x,y,z] float ordered coordinates or list of ordered or unordered wires

  • surf_pts -- list of [x,y,z] float coordinates (uses only edges if [])

  • thickness -- thickness may be negative or positive depending on direction, (returns 2D surface if 0)

  • degree -- >=2

  • nbPtsOnCur -- number of points on curve >= 15

  • nbIter -- number of iterations >= 2

  • anisotropy -- bool Anisotropy

  • tol2d -- 2D tolerance >0

  • tol3d -- 3D tolerance >0

  • tolAng -- angular tolerance

  • tolCurv -- tolerance for curvature >0

  • maxDeg -- highest polynomial degree >= 2

  • maxSegments -- greatest number of segments >= 2

戻り値の型:

Union[Solid, Face]

static isSolid(obj: Shape) bool[ソース]

Returns true if the object is a solid, false otherwise

パラメータ:

obj (Shape) --

戻り値の型:

bool

classmethod makeBox(length,width,height,[pnt,dir]) -- Make a box located in pnt with the dimensions (length,width,height)[ソース]

By default pnt=Vector(0,0,0) and dir=Vector(0,0,1)

パラメータ:
  • length (float) --

  • width (float) --

  • height (float) --

  • pnt (Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]]) --

  • dir (Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]]) --

戻り値の型:

Solid

classmethod makeCone(radius1: float, radius2: float, height: float, pnt: ~typing.Union[~cadquery.occ_impl.geom.Vector, ~typing.Tuple[~typing.Union[int, float], ~typing.Union[int, float]], ~typing.Tuple[~typing.Union[int, float], ~typing.Union[int, float], ~typing.Union[int, float]]] = Vector: (0.0, 0.0, 0.0), dir: ~typing.Union[~cadquery.occ_impl.geom.Vector, ~typing.Tuple[~typing.Union[int, float], ~typing.Union[int, float]], ~typing.Tuple[~typing.Union[int, float], ~typing.Union[int, float], ~typing.Union[int, float]]] = Vector: (0.0, 0.0, 1.0), angleDegrees: float = 360) Solid[ソース]

Make a cone with given radii and height By default pnt=Vector(0,0,0), dir=Vector(0,0,1) and angle=360

パラメータ:
  • radius1 (float) --

  • radius2 (float) --

  • height (float) --

  • pnt (Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]]) --

  • dir (Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]]) --

  • angleDegrees (float) --

戻り値の型:

Solid

classmethod makeCylinder(radius: float, height: float, pnt: ~typing.Union[~cadquery.occ_impl.geom.Vector, ~typing.Tuple[~typing.Union[int, float], ~typing.Union[int, float]], ~typing.Tuple[~typing.Union[int, float], ~typing.Union[int, float], ~typing.Union[int, float]]] = Vector: (0.0, 0.0, 0.0), dir: ~typing.Union[~cadquery.occ_impl.geom.Vector, ~typing.Tuple[~typing.Union[int, float], ~typing.Union[int, float]], ~typing.Tuple[~typing.Union[int, float], ~typing.Union[int, float], ~typing.Union[int, float]]] = Vector: (0.0, 0.0, 1.0), angleDegrees: float = 360) Solid[ソース]

makeCylinder(radius,height,[pnt,dir,angle]) -- Make a cylinder with a given radius and height By default pnt=Vector(0,0,0),dir=Vector(0,0,1) and angle=360

パラメータ:
  • radius (float) --

  • height (float) --

  • pnt (Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]]) --

  • dir (Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]]) --

  • angleDegrees (float) --

戻り値の型:

Solid

classmethod makeLoft(listOfWire: List[Wire], ruled: bool = False) Solid[ソース]

makes a loft from a list of wires The wires will be converted into faces when possible-- it is presumed that nobody ever actually wants to make an infinitely thin shell for a real FreeCADPart.

パラメータ:
  • listOfWire (List[Wire]) --

  • ruled (bool) --

戻り値の型:

Solid

classmethod makeSolid(shell: Shell) Solid[ソース]

Makes a solid from a single shell.

パラメータ:

shell (Shell) --

戻り値の型:

Solid

classmethod makeSphere(radius: float, pnt: ~typing.Union[~cadquery.occ_impl.geom.Vector, ~typing.Tuple[~typing.Union[int, float], ~typing.Union[int, float]], ~typing.Tuple[~typing.Union[int, float], ~typing.Union[int, float], ~typing.Union[int, float]]] = Vector: (0.0, 0.0, 0.0), dir: ~typing.Union[~cadquery.occ_impl.geom.Vector, ~typing.Tuple[~typing.Union[int, float], ~typing.Union[int, float]], ~typing.Tuple[~typing.Union[int, float], ~typing.Union[int, float], ~typing.Union[int, float]]] = Vector: (0.0, 0.0, 1.0), angleDegrees1: float = 0, angleDegrees2: float = 90, angleDegrees3: float = 360) Shape[ソース]

Make a sphere with a given radius By default pnt=Vector(0,0,0), dir=Vector(0,0,1), angle1=0, angle2=90 and angle3=360

パラメータ:
  • radius (float) --

  • pnt (Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]]) --

  • dir (Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]]) --

  • angleDegrees1 (float) --

  • angleDegrees2 (float) --

  • angleDegrees3 (float) --

戻り値の型:

Shape

classmethod makeTorus(radius1: float, radius2: float, pnt: ~typing.Union[~cadquery.occ_impl.geom.Vector, ~typing.Tuple[~typing.Union[int, float], ~typing.Union[int, float]], ~typing.Tuple[~typing.Union[int, float], ~typing.Union[int, float], ~typing.Union[int, float]]] = Vector: (0.0, 0.0, 0.0), dir: ~typing.Union[~cadquery.occ_impl.geom.Vector, ~typing.Tuple[~typing.Union[int, float], ~typing.Union[int, float]], ~typing.Tuple[~typing.Union[int, float], ~typing.Union[int, float], ~typing.Union[int, float]]] = Vector: (0.0, 0.0, 1.0), angleDegrees1: float = 0, angleDegrees2: float = 360) Solid[ソース]

makeTorus(radius1,radius2,[pnt,dir,angle1,angle2,angle]) -- Make a torus with a given radii and angles By default pnt=Vector(0,0,0),dir=Vector(0,0,1),angle1=0 ,angle1=360 and angle=360

パラメータ:
  • radius1 (float) --

  • radius2 (float) --

  • pnt (Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]]) --

  • dir (Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]]) --

  • angleDegrees1 (float) --

  • angleDegrees2 (float) --

戻り値の型:

Solid

classmethod makeWedge(dx: float, dy: float, dz: float, xmin: float, zmin: float, xmax: float, zmax: float, pnt: ~typing.Union[~cadquery.occ_impl.geom.Vector, ~typing.Tuple[~typing.Union[int, float], ~typing.Union[int, float]], ~typing.Tuple[~typing.Union[int, float], ~typing.Union[int, float], ~typing.Union[int, float]]] = Vector: (0.0, 0.0, 0.0), dir: ~typing.Union[~cadquery.occ_impl.geom.Vector, ~typing.Tuple[~typing.Union[int, float], ~typing.Union[int, float]], ~typing.Tuple[~typing.Union[int, float], ~typing.Union[int, float], ~typing.Union[int, float]]] = Vector: (0.0, 0.0, 1.0)) Solid[ソース]

Make a wedge located in pnt By default pnt=Vector(0,0,0) and dir=Vector(0,0,1)

パラメータ:
  • dx (float) --

  • dy (float) --

  • dz (float) --

  • xmin (float) --

  • zmin (float) --

  • xmax (float) --

  • zmax (float) --

  • pnt (Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]]) --

  • dir (Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]]) --

戻り値の型:

Solid

classmethod revolve(outerWire: Wire, innerWires: List[Wire], angleDegrees: Union[float, int], axisStart: Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]], axisEnd: Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]]) Solid[ソース]
classmethod revolve(face: Face, angleDegrees: Union[float, int], axisStart: Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]], axisEnd: Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]]) Solid

Attempt to revolve the list of wires into a solid in the provided direction

パラメータ:
  • outerWire (Wire) -- the outermost wire

  • innerWires (List[Wire]) -- a list of inner wires

  • angleDegrees (float, anything less than 360 degrees will leave the shape open) -- the angle to revolve through.

  • axisStart (Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]]) -- the start point of the axis of rotation

  • axisEnd (Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]]) -- the end point of the axis of rotation

戻り値:

a Solid object

戻り値の型:

Solid

The wires must not intersect

  • all wires must be closed

  • there cannot be any intersecting or self-intersecting wires

  • wires must be listed from outside in

  • more than one levels of nesting is not supported reliably

  • the wire(s) that you're revolving cannot be centered

This method will attempt to sort the wires, but there is much work remaining to make this method reliable.

classmethod sweep(outerWire: Wire, innerWires: List[Wire], path: Union[Wire, Edge], makeSolid: bool = True, isFrenet: bool = False, mode: Optional[Union[Vector, Wire, Edge]] = None, transitionMode: Literal['transformed', 'round', 'right'] = 'transformed') Shape[ソース]
classmethod sweep(face: Face, path: Union[Wire, Edge], makeSolid: bool = True, isFrenet: bool = False, mode: Optional[Union[Vector, Wire, Edge]] = None, transitionMode: Literal['transformed', 'round', 'right'] = 'transformed') Shape

Attempt to sweep the list of wires into a prismatic solid along the provided path

パラメータ:
  • outerWire (Wire) -- the outermost wire

  • innerWires (List[Wire]) -- a list of inner wires

  • path (Union[Wire, Edge]) -- The wire to sweep the face resulting from the wires over

  • makeSolid (bool) -- return Solid or Shell (default True)

  • isFrenet (bool) -- Frenet mode (default False)

  • mode (Optional[Union[Vector, Wire, Edge]]) -- additional sweep mode parameters

  • transitionMode (Literal['transformed', 'round', 'right']) -- handling of profile orientation at C1 path discontinuities. Possible values are {'transformed','round', 'right'} (default: 'right').

戻り値:

a Solid object

戻り値の型:

Shape

classmethod sweep_multi(profiles: Iterable[Union[Wire, Face]], path: Union[Wire, Edge], makeSolid: bool = True, isFrenet: bool = False, mode: Optional[Union[Vector, Wire, Edge]] = None) Solid[ソース]

Multi section sweep. Only single outer profile per section is allowed.

パラメータ:
  • profiles (Iterable[Union[Wire, Face]]) -- list of profiles

  • path (Union[Wire, Edge]) -- The wire to sweep the face resulting from the wires over

  • mode (Optional[Union[Vector, Wire, Edge]]) -- additional sweep mode parameters.

  • makeSolid (bool) --

  • isFrenet (bool) --

戻り値:

a Solid object

戻り値の型:

Solid

class cadquery.StringSyntaxSelector(selectorString)[ソース]

ベースクラス: Selector

Filter lists objects using a simple string syntax. All of the filters available in the string syntax are also available ( usually with more functionality ) through the creation of full-fledged selector objects. see Selector and its subclasses

Filtering works differently depending on the type of object list being filtered.

パラメータ:

selectorString -- A two-part selector string, [selector][axis]

戻り値:

objects that match the specified selector

*Modifiers* are ('|','+','-','<','>','%')

|:

parallel to ( same as ParallelDirSelector ). Can return multiple objects.

#:

perpendicular to (same as PerpendicularDirSelector )

+:

positive direction (same as DirectionSelector )

-:

negative direction (same as DirectionSelector )

>:

maximize (same as DirectionMinMaxSelector with directionMax=True)

<:

minimize (same as DirectionMinMaxSelector with directionMax=False )

%:

curve/surface type (same as TypeSelector)

*axisStrings* are: X,Y,Z,XY,YZ,XZ or (x,y,z) which defines an arbitrary direction

It is possible to combine simple selectors together using logical operations. The following operations are supported

and:

Logical AND, e.g. >X and >Y

or:

Logical OR, e.g. |X or |Y

not:

Logical NOT, e.g. not #XY

exc(ept):

Set difference (equivalent to AND NOT): |X exc >Z

Finally, it is also possible to use even more complex expressions with nesting and arbitrary number of terms, e.g.

(not >X[0] and #XY) or >XY[0]

Selectors are a complex topic: see Selectors Reference for more information

__init__(selectorString)[ソース]

Feed the input string through the parser and construct an relevant complex selector object

filter(objectList: Sequence[Shape])[ソース]

Filter give object list through th already constructed complex selector object

パラメータ:

objectList (Sequence[Shape]) --

class cadquery.TypeSelector(typeString: str)[ソース]

ベースクラス: Selector

所定のジオメトリタイプを持つオブジェクトを選択します。

Applicability:

Faces: PLANE, CYLINDER, CONE, SPHERE, TORUS, BEZIER, BSPLINE, REVOLUTION, EXTRUSION, OFFSET, OTHER Edges: LINE, CIRCLE, ELLIPSE, HYPERBOLA, PARABOLA, BEZIER, BSPLINE, OFFSET, OTHER

You can use the string selector syntax. For example this:

CQ(aCube).faces(TypeSelector("PLANE"))

will select 6 faces, and is equivalent to:

CQ(aCube).faces("%PLANE")
パラメータ:

typeString (str) --

__init__(typeString: str)[ソース]
パラメータ:

typeString (str) --

filter(objectList: Sequence[Shape]) List[Shape][ソース]

Filter the provided list.

The default implementation returns the original list unfiltered.

パラメータ:

objectList (list of OCCT primitives) -- list to filter

戻り値:

filtered list

戻り値の型:

List[Shape]

class cadquery.Vector(x: float, y: float, z: float)[ソース]
class cadquery.Vector(x: float, y: float)
class cadquery.Vector(v: Vector)
class cadquery.Vector(v: Sequence[float])
class cadquery.Vector(v: Union[gp_Vec, gp_Pnt, gp_Dir, gp_XYZ])
class cadquery.Vector

ベースクラス: object

3次元ベクトルを作成する

パラメータ:

args -- a 3D vector, with x-y-z parts.

you can either provide:
  • nothing (in which case the null vector is return)

  • a gp_Vec

  • a vector ( in which case it is copied )

  • a 3-tuple

  • a 2-tuple (z assumed to be 0)

  • three float values: x, y, and z

  • two float values: x,y

Center() Vector[ソース]

Return the vector itself

The center of myself is myself. Provided so that vectors, vertices, and other shapes all support a common interface, when Center() is requested for all objects on the stack.

戻り値の型:

Vector

__eq__(other: Vector) bool[ソース]

Return self==value.

パラメータ:

other (Vector) --

戻り値の型:

bool

__hash__ = None
__init__(x: float, y: float, z: float) None[ソース]
__init__(x: float, y: float) None
__init__(v: Vector) None
__init__(v: Sequence[float]) None
__init__(v: Union[gp_Vec, gp_Pnt, gp_Dir, gp_XYZ]) None
__init__() None
__repr__() str[ソース]

Return repr(self).

戻り値の型:

str

__str__() str[ソース]

Return str(self).

戻り値の型:

str

__weakref__

list of weak references to the object (if defined)

multiply(scale: float) Vector[ソース]

Return a copy multiplied by the provided scalar

パラメータ:

scale (float) --

戻り値の型:

Vector

normalized() Vector[ソース]

Return a normalized version of this vector

戻り値の型:

Vector

projectToLine(line: Vector) Vector[ソース]

Returns a new vector equal to the projection of this Vector onto the line represented by Vector <line>

パラメータ:
  • args -- Vector

  • line (Vector) --

戻り値の型:

Vector

Returns the projected vector.

projectToPlane(plane: Plane) Vector[ソース]

Vector is projected onto the plane provided as input.

パラメータ:
  • args -- Plane object

  • plane (Plane) --

戻り値の型:

Vector

Returns the projected vector.

class cadquery.Vertex(obj: TopoDS_Shape, forConstruction: bool = False)[ソース]

ベースクラス: Shape

空間の中の一点

パラメータ:
  • obj (TopoDS_Shape) --

  • forConstruction (bool) --

Center() Vector[ソース]

The center of a vertex is itself!

戻り値の型:

Vector

__init__(obj: TopoDS_Shape, forConstruction: bool = False)[ソース]

Create a vertex

パラメータ:
  • obj (TopoDS_Shape) --

  • forConstruction (bool) --

class cadquery.Wire(obj: TopoDS_Shape)[ソース]

ベースクラス: Shape, Mixin1D

接続され、順序付けられた一連のEdgeで、通常、Faceを囲みます。

パラメータ:

obj (TopoDS_Shape) --

Vertices() List[Vertex][ソース]

Ordered list of vertices of the wire.

戻り値の型:

List[Vertex]

__iter__() Iterator[Edge][ソース]

Iterate over edges in an ordered way.

戻り値の型:

Iterator[Edge]

classmethod assembleEdges(listOfEdges: Iterable[Edge]) Wire[ソース]

Attempts to build a wire that consists of the edges in the provided list

パラメータ:
  • cls --

  • listOfEdges (Iterable[Edge]) -- a list of Edge objects. The edges are not to be consecutive.

戻り値:

a wire with the edges assembled

戻り値の型:

Wire

BRepBuilderAPI_MakeWire::Error() values:

  • BRepBuilderAPI_WireDone = 0

  • BRepBuilderAPI_EmptyWire = 1

  • BRepBuilderAPI_DisconnectedWire = 2

  • BRepBuilderAPI_NonManifoldWire = 3

chamfer2D(d: float, vertices: Iterable[Vertex]) Wire[ソース]

Apply 2D chamfer to a wire

パラメータ:
  • d (float) --

  • vertices (Iterable[Vertex]) --

戻り値の型:

Wire

close() Wire[ソース]

Close a Wire

戻り値の型:

Wire

classmethod combine(listOfWires: Iterable[Union[Wire, Edge]], tol: float = 1e-09) List[Wire][ソース]

Attempt to combine a list of wires and edges into a new wire.

パラメータ:
  • cls --

  • listOfWires (Iterable[Union[Wire, Edge]]) --

  • tol (float) -- default 1e-9

戻り値:

List[Wire]

戻り値の型:

List[Wire]

fillet(radius: float, vertices: Optional[Iterable[Vertex]] = None) Wire[ソース]

Apply 2D or 3D fillet to a wire :param wire: The input wire to fillet. Currently only open wires are supported :param radius: the radius of the fillet, must be > zero :param vertices: Optional list of vertices to fillet. By default all vertices are fillet. :return: A wire with filleted corners

パラメータ:
  • radius (float) --

  • vertices (Optional[Iterable[Vertex]]) --

戻り値の型:

Wire

fillet2D(radius: float, vertices: Iterable[Vertex]) Wire[ソース]

Apply 2D fillet to a wire

パラメータ:
  • radius (float) --

  • vertices (Iterable[Vertex]) --

戻り値の型:

Wire

classmethod makeCircle(radius: float, center: Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]], normal: Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]]) Wire[ソース]

Makes a Circle centered at the provided point, having normal in the provided direction

パラメータ:
  • radius (float) -- floating point radius of the circle, must be > 0

  • center (Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]]) -- vector representing the center of the circle

  • normal (Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]]) -- vector representing the direction of the plane the circle should lie in

戻り値の型:

Wire

classmethod makeEllipse(x_radius: float, y_radius: float, center: Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]], normal: Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]], xDir: Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]], angle1: float = 360.0, angle2: float = 360.0, rotation_angle: float = 0.0, closed: bool = True) Wire[ソース]

Makes an Ellipse centered at the provided point, having normal in the provided direction

パラメータ:
  • x_radius (float) -- floating point major radius of the ellipse (x-axis), must be > 0

  • y_radius (float) -- floating point minor radius of the ellipse (y-axis), must be > 0

  • center (Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]]) -- vector representing the center of the circle

  • normal (Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]]) -- vector representing the direction of the plane the circle should lie in

  • angle1 (float) -- start angle of arc

  • angle2 (float) -- end angle of arc

  • rotation_angle (float) -- angle to rotate the created ellipse / arc

  • xDir (Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]]) --

  • closed (bool) --

戻り値の型:

Wire

classmethod makeHelix(pitch: float, height: float, radius: float, center: ~typing.Union[~cadquery.occ_impl.geom.Vector, ~typing.Tuple[~typing.Union[int, float], ~typing.Union[int, float]], ~typing.Tuple[~typing.Union[int, float], ~typing.Union[int, float], ~typing.Union[int, float]]] = Vector: (0.0, 0.0, 0.0), dir: ~typing.Union[~cadquery.occ_impl.geom.Vector, ~typing.Tuple[~typing.Union[int, float], ~typing.Union[int, float]], ~typing.Tuple[~typing.Union[int, float], ~typing.Union[int, float], ~typing.Union[int, float]]] = Vector: (0.0, 0.0, 1.0), angle: float = 360.0, lefthand: bool = False) Wire[ソース]

Make a helix with a given pitch, height and radius By default a cylindrical surface is used to create the helix. If the fourth parameter is set (the apex given in degree) a conical surface is used instead'

パラメータ:
  • pitch (float) --

  • height (float) --

  • radius (float) --

  • center (Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]]) --

  • dir (Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]]) --

  • angle (float) --

  • lefthand (bool) --

戻り値の型:

Wire

classmethod makePolygon(listOfVertices: Iterable[Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]]], forConstruction: bool = False, close: bool = False) Wire[ソース]

Construct a polygonal wire from points.

パラメータ:
  • listOfVertices (Iterable[Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]]]) --

  • forConstruction (bool) --

  • close (bool) --

戻り値の型:

Wire

offset2D(d: float, kind: Literal['arc', 'intersection', 'tangent'] = 'arc') List[Wire][ソース]

Offsets a planar wire

パラメータ:
  • d (float) --

  • kind (Literal['arc', 'intersection', 'tangent']) --

戻り値の型:

List[Wire]

stitch(other: Wire) Wire[ソース]

Attempt to stitch wires

パラメータ:

other (Wire) --

戻り値の型:

Wire

class cadquery.Workplane(obj: Union[Vector, Location, Shape, Sketch])[ソース]
class cadquery.Workplane(inPlane: Union[Plane, str] = 'XY', origin: Union[Tuple[float, float], Tuple[float, float, float], Vector] = (0, 0, 0), obj: Optional[Union[Vector, Location, Shape, Sketch]] = None)

ベースクラス: object

2次元座標を使用できる空間上の座標系を定義します。

パラメータ:
  • plane (a Plane object, or a string in (XY|YZ|XZ|front|back|top|bottom|left|right)) -- the plane in which the workplane will be done

  • origin (a 3-tuple in global coordinates, or None to default to the origin) -- the desired origin of the new workplane

  • obj (a CAD primitive, or None to use the centerpoint of the plane as the initial stack value.) -- an object to use initially for the stack

Raises:

ValueError if the provided plane is not a plane, a valid named workplane

戻り値:

A Workplane object, with coordinate system matching the supplied plane.

The most common use is:

s = Workplane("XY")

After creation, the stack contains a single point, the origin of the underlying plane, and the current point is on the origin.

注釈

You can also create workplanes on the surface of existing faces using workplane()

__add__(toUnion: Union[Workplane, Solid, Compound]) T[ソース]

Syntactic sugar for union.

Notice that r = a + b is equivalent to r = a.union(b) and r = a | b.

パラメータ:
戻り値の型:

T

__and__(toUnion: Union[Workplane, Solid, Compound]) T[ソース]

Syntactic sugar for intersect.

Notice that r = a & b is equivalent to r = a.intersect(b).

Example:

Box = Workplane("XY").box(1, 1, 1, centered=(False, False, False))
Sphere = Workplane("XY").sphere(1)
result = Box & Sphere
パラメータ:
戻り値の型:

T

__init__(obj: Union[Vector, Location, Shape, Sketch]) None[ソース]
__init__(inPlane: Union[Plane, str] = 'XY', origin: Union[Tuple[float, float], Tuple[float, float, float], Vector] = (0, 0, 0), obj: Optional[Union[Vector, Location, Shape, Sketch]] = None) None

make a workplane from a particular plane

パラメータ:
  • inPlane (a Plane object, or a string in (XY|YZ|XZ|front|back|top|bottom|left|right)) -- the plane in which the workplane will be done

  • origin (a 3-tuple in global coordinates, or None to default to the origin) -- the desired origin of the new workplane

  • obj (a CAD primitive, or None to use the centerpoint of the plane as the initial stack value.) -- an object to use initially for the stack

Raises:

ValueError if the provided plane is not a plane, or one of XY|YZ|XZ

戻り値:

A Workplane object, with coordinate system matching the supplied plane.

The most common use is:

s = Workplane("XY")

After creation, the stack contains a single point, the origin of the underlying plane, and the current point is on the origin.

__or__(toUnion: Union[Workplane, Solid, Compound]) T[ソース]

Syntactic sugar for union.

Notice that r = a | b is equivalent to r = a.union(b) and r = a + b.

Example:

Box = Workplane("XY").box(1, 1, 1, centered=(False, False, False))
Sphere = Workplane("XY").sphere(1)
result = Box | Sphere
パラメータ:
戻り値の型:

T

__sub__(toUnion: Union[Workplane, Solid, Compound]) T[ソース]

Syntactic sugar for cut.

Notice that r = a - b is equivalent to r = a.cut(b).

Example:

Box = Workplane("XY").box(1, 1, 1, centered=(False, False, False))
Sphere = Workplane("XY").sphere(1)
result = Box - Sphere
パラメータ:
戻り値の型:

T

__weakref__

list of weak references to the object (if defined)

add(obj: Workplane) T[ソース]
add(obj: Union[Vector, Location, Shape, Sketch]) T
add(obj: Iterable[Union[Vector, Location, Shape, Sketch]]) T

Adds an object or a list of objects to the stack

パラメータ:

obj (a Workplane, CAD primitive, or list of CAD primitives) -- an object to add

戻り値:

a Workplane with the requested operation performed

If a Workplane object, the values of that object's stack are added. If a list of cad primitives, they are all added. If a single CAD primitive then it is added.

Used in rare cases when you need to combine the results of several CQ results into a single Workplane object.

all() List[T][ソース]

Return a list of all CQ objects on the stack.

useful when you need to operate on the elements individually.

Contrast with vals, which returns the underlying objects for all of the items on the stack

パラメータ:

self (T) --

戻り値の型:

List[T]

ancestors(kind: Literal['Vertex', 'Edge', 'Wire', 'Face', 'Shell', 'Solid', 'CompSolid', 'Compound'], tag: Optional[str] = None) T[ソース]

Select topological ancestors.

パラメータ:
  • kind (Literal['Vertex', 'Edge', 'Wire', 'Face', 'Shell', 'Solid', 'CompSolid', 'Compound']) -- kind of ancestor, e.g. "Face" or "Edge"

  • tag (Optional[str]) -- if set, search the tagged object instead of self

  • self (T) --

戻り値:

a Workplane object whose stack contains selected ancestors.

戻り値の型:

T

bezier(listOfXYTuple: Iterable[Union[Tuple[float, float], Tuple[float, float, float], Vector]], forConstruction: bool = False, includeCurrent: bool = False, makeWire: bool = False) T[ソース]

Make a cubic Bézier curve by the provided points (2D or 3D).

パラメータ:
  • listOfXYTuple (Iterable[Union[Tuple[float, float], Tuple[float, float, float], Vector]]) -- Bezier control points and end point. All points except the last point are Bezier control points, and the last point is the end point

  • includeCurrent (bool) -- Use the current point as a starting point of the curve

  • makeWire (bool) -- convert the resulting bezier edge to a wire

  • self (T) --

  • forConstruction (bool) --

戻り値:

a Workplane object with the current point at the end of the bezier

戻り値の型:

T

The Bézier Will begin at either current point or the first point of listOfXYTuple, and end with the last point of listOfXYTuple

box(length: float, width: float, height: float, centered: Union[bool, Tuple[bool, bool, bool]] = True, combine: Union[bool, Literal['cut', 'a', 's']] = True, clean: bool = True) T[ソース]

Return a 3d box with specified dimensions for each object on the stack.

パラメータ:
  • length (float) -- box size in X direction

  • width (float) -- box size in Y direction

  • height (float) -- box size in Z direction

  • centered (Union[bool, Tuple[bool, bool, bool]]) -- If True, the box will be centered around the reference point. If False, the corner of the box will be on the reference point and it will extend in the positive x, y and z directions. Can also use a 3-tuple to specify centering along each axis.

  • combine (Union[bool, Literal['cut', 'a', 's']]) -- should the results be combined with other solids on the stack (and each other)?

  • clean (bool) -- call clean() afterwards to have a clean shape

  • self (T) --

戻り値の型:

T

One box is created for each item on the current stack. If no items are on the stack, one box using the current workplane center is created.

If combine is true, the result will be a single object on the stack. If a solid was found in the chain, the result is that solid with all boxes produced fused onto it otherwise, the result is the combination of all the produced boxes.

If combine is false, the result will be a list of the boxes produced.

Most often boxes form the basis for a part:

# make a single box with lower left corner at origin
s = Workplane().box(1, 2, 3, centered=False)

But sometimes it is useful to create an array of them:

# create 4 small square bumps on a larger base plate:
s = (
    Workplane()
    .box(4, 4, 0.5)
    .faces(">Z")
    .workplane()
    .rect(3, 3, forConstruction=True)
    .vertices()
    .box(0.25, 0.25, 0.25, combine=True)
)
cboreHole(diameter: float, cboreDiameter: float, cboreDepth: float, depth: Optional[float] = None, clean: bool = True) T[ソース]

Makes a counterbored hole for each item on the stack.

パラメータ:
  • diameter (float) -- the diameter of the hole

  • cboreDiameter (float) -- the diameter of the cbore, must be greater than hole diameter

  • cboreDepth (float > 0) -- depth of the counterbore

  • depth (float > 0 or None to drill thru the entire part) -- the depth of the hole

  • clean (bool) -- call clean() afterwards to have a clean shape

  • self (T) --

戻り値の型:

T

The surface of the hole is at the current workplane plane.

One hole is created for each item on the stack. A very common use case is to use a construction rectangle to define the centers of a set of holes, like so:

s = (
    Workplane()
    .box(2, 4, 0.5)
    .faces(">Z")
    .workplane()
    .rect(1.5, 3.5, forConstruction=True)
    .vertices()
    .cboreHole(0.125, 0.25, 0.125, depth=None)
)

This sample creates a plate with a set of holes at the corners.

Plugin Note: this is one example of the power of plugins. Counterbored holes are quite time consuming to create, but are quite easily defined by users.

see cskHole() to make countersinks instead of counterbores

center(x: float, y: float) T[ソース]

Shift local coordinates to the specified location.

The location is specified in terms of local coordinates.

パラメータ:
  • x (float) -- the new x location

  • y (float) -- the new y location

  • self (T) --

戻り値:

the Workplane object, with the center adjusted.

戻り値の型:

T

The current point is set to the new center. This method is useful to adjust the center point after it has been created automatically on a face, but not where you'd like it to be.

In this example, we adjust the workplane center to be at the corner of a cube, instead of the center of a face, which is the default:

# this workplane is centered at x=0.5,y=0.5, the center of the upper face
s = Workplane().box(1, 1, 1).faces(">Z").workplane()

s = s.center(-0.5, -0.5)  # move the center to the corner
t = s.circle(0.25).extrude(0.2)
assert t.faces().size() == 9  # a cube with a cylindrical nub at the top right corner

The result is a cube with a round boss on the corner

chamfer(length: float, length2: Optional[float] = None) T[ソース]

Chamfers a solid on the selected edges.

The edges on the stack are chamfered. The solid to which the edges belong must be in the parent chain of the selected edges.

Optional parameter length2 can be supplied with a different value than length for a chamfer that is shorter on one side longer on the other side.

パラメータ:
  • length (float) -- the length of the chamfer, must be greater than zero

  • length2 (Optional[float]) -- optional parameter for asymmetrical chamfer

  • self (T) --

例外:
  • ValueError -- if at least one edge is not selected

  • ValueError -- if the solid containing the edge is not in the chain

戻り値:

CQ object with the resulting solid selected.

戻り値の型:

T

This example will create a unit cube, with the top edges chamfered:

s = Workplane("XY").box(1, 1, 1).faces("+Z").chamfer(0.1)

This example will create chamfers longer on the sides:

s = Workplane("XY").box(1, 1, 1).faces("+Z").chamfer(0.2, 0.1)
circle(radius: float, forConstruction: bool = False) T[ソース]

Make a circle for each item on the stack.

パラメータ:
  • radius (float) -- radius of the circle

  • forConstruction (true if the wires are for reference, false if they are creating part geometry) -- should the new wires be reference geometry only?

  • self (T) --

戻り値:

a new CQ object with the created wires on the stack

戻り値の型:

T

A common use case is to use a for-construction rectangle to define the centers of a hole pattern:

s = Workplane().rect(4.0, 4.0, forConstruction=True).vertices().circle(0.25)

Creates 4 circles at the corners of a square centered on the origin. Another common case is to use successive circle() calls to create concentric circles. This works because the center of a circle is its reference point:

s = Workplane().circle(2.0).circle(1.0)

Creates two concentric circles, which when extruded will form a ring.

Future Enhancements:

better way to handle forConstruction project points not in the workplane plane onto the workplane plane

clean() T[ソース]

Cleans the current solid by removing unwanted edges from the faces.

Normally you don't have to call this function. It is automatically called after each related operation. You can disable this behavior with clean=False parameter if method has any. In some cases this can improve performance drastically but is generally dis-advised since it may break some operations such as fillet.

Note that in some cases where lots of solid operations are chained, clean() may actually improve performance since the shape is 'simplified' at each step and thus next operation is easier.

Also note that, due to limitation of the underlying engine, clean may fail to produce a clean output in some cases such as spherical faces.

パラメータ:

self (T) --

戻り値の型:

T

close() T[ソース]

End construction, and attempt to build a closed wire.

戻り値:

a CQ object with a completed wire on the stack, if possible.

パラメータ:

self (T) --

戻り値の型:

T

After 2D (or 3D) drafting with methods such as lineTo, threePointArc, tangentArcPoint and polyline, it is necessary to convert the edges produced by these into one or more wires.

When a set of edges is closed, CadQuery assumes it is safe to build the group of edges into a wire. This example builds a simple triangular prism:

s = Workplane().lineTo(1, 0).lineTo(1, 1).close().extrude(0.2)
combine(clean: bool = True, glue: bool = False, tol: Optional[float] = None) T[ソース]

Attempts to combine all of the items on the stack into a single item.

WARNING: all of the items must be of the same type!

パラメータ:
  • clean (bool) -- call clean() afterwards to have a clean shape

  • glue (bool) -- use a faster gluing mode for non-overlapping shapes (default False)

  • tol (Optional[float]) -- tolerance value for fuzzy bool operation mode (default None)

  • self (T) --

Raises:

ValueError if there are no items on the stack, or if they cannot be combined

戻り値:

a CQ object with the resulting object selected

戻り値の型:

T

combineSolids(otherCQToCombine: Optional[Workplane] = None) Workplane[ソース]

!!!DEPRECATED!!! use union() Combines all solids on the current stack, and any context object, together into a single object.

After the operation, the returned solid is also the context solid.

パラメータ:

otherCQToCombine (Optional[Workplane]) -- another CadQuery to combine.

戻り値:

a CQ object with the resulting combined solid on the stack.

戻り値の型:

Workplane

Most of the time, both objects will contain a single solid, which is combined and returned on the stack of the new object.

compounds(selector: Optional[Union[str, Selector]] = None, tag: Optional[str] = None) T[ソース]

Select compounds on the stack, optionally filtering the selection. If there are multiple objects on the stack, they are collected and a list of all the distinct compounds is returned.

パラメータ:
  • selector (Optional[Union[str, Selector]]) -- optional Selector object, or string selector expression (see StringSyntaxSelector)

  • tag (Optional[str]) -- if set, search the tagged object instead of self

  • self (T) --

戻り値:

a CQ object whose stack contains all of the distinct compounds of all objects on the current stack, filtered by the provided selector.

戻り値の型:

T

A compound contains multiple CAD primitives that resulted from a single operation, such as a union, cut, split, or fillet. Compounds can contain multiple edges, wires, or solids.

consolidateWires() T[ソース]

Attempt to consolidate wires on the stack into a single. If possible, a new object with the results are returned. if not possible, the wires remain separated

パラメータ:

self (T) --

戻り値の型:

T

copyWorkplane(obj: T) T[ソース]

Copies the workplane from obj.

パラメータ:

obj (a CQ object) -- an object to copy the workplane from

戻り値:

a CQ object with obj's workplane

戻り値の型:

T

cskHole(diameter: float, cskDiameter: float, cskAngle: float, depth: Optional[float] = None, clean: bool = True) T[ソース]

Makes a countersunk hole for each item on the stack.

パラメータ:
  • diameter (float > 0) -- the diameter of the hole

  • cskDiameter (float) -- the diameter of the countersink, must be greater than hole diameter

  • cskAngle (float > 0) -- angle of the countersink, in degrees ( 82 is common )

  • depth (float > 0 or None to drill thru the entire part.) -- the depth of the hole

  • clean (bool) -- call clean() afterwards to have a clean shape

  • self (T) --

戻り値の型:

T

The surface of the hole is at the current workplane.

One hole is created for each item on the stack. A very common use case is to use a construction rectangle to define the centers of a set of holes, like so:

s = (
    Workplane()
    .box(2, 4, 0.5)
    .faces(">Z")
    .workplane()
    .rect(1.5, 3.5, forConstruction=True)
    .vertices()
    .cskHole(0.125, 0.25, 82, depth=None)
)

This sample creates a plate with a set of holes at the corners.

Plugin Note: this is one example of the power of plugins. CounterSunk holes are quite time consuming to create, but are quite easily defined by users.

see cboreHole() to make counterbores instead of countersinks

cut(toCut: Union[Workplane, Solid, Compound], clean: bool = True, tol: Optional[float] = None) T[ソース]

Cuts the provided solid from the current solid, IE, perform a solid subtraction.

パラメータ:
  • toCut (Union[Workplane, Solid, Compound]) -- a solid object, or a Workplane object having a solid

  • clean (bool) -- call clean() afterwards to have a clean shape

  • tol (Optional[float]) -- tolerance value for fuzzy bool operation mode (default None)

  • self (T) --

例外:

ValueError -- if there is no solid to subtract from in the chain

戻り値:

a Workplane object with the resulting object selected

戻り値の型:

T

cutBlind(until: Union[float, Literal['next', 'last'], Face], clean: bool = True, both: bool = False, taper: Optional[float] = None) T[ソース]

Use all un-extruded wires in the parent chain to create a prismatic cut from existing solid.

Specify either a distance value, or one of "next", "last" to indicate a face to cut to.

Similar to extrude, except that a solid in the parent chain is required to remove material from. cutBlind always removes material from a part.

パラメータ:
  • until (Union[float, Literal['next', 'last'], Face]) -- The distance to cut to, normal to the workplane plane. When a negative float is passed the cut extends this far in the opposite direction to the normal of the plane (i.e in the solid). The string "next" cuts until the next face orthogonal to the wire normal. "last" cuts to the last face. If an object of type Face is passed, then the cut will extend until this face.

  • clean (bool) -- call clean() afterwards to have a clean shape

  • both (bool) -- cut in both directions symmetrically

  • taper (Optional[float]) -- angle for optional tapered extrusion

  • self (T) --

例外:

ValueError -- if there is no solid to subtract from in the chain

戻り値:

a CQ object with the resulting object selected

戻り値の型:

T

see cutThruAll() to cut material from the entire part

cutEach(fcn: Callable[[Location], Shape], useLocalCoords: bool = False, clean: bool = True) T[ソース]

Evaluates the provided function at each point on the stack (ie, eachpoint) and then cuts the result from the context solid.

パラメータ:
  • fcn (Callable[[Location], Shape]) -- a function suitable for use in the eachpoint method: ie, that accepts a vector

  • useLocalCoords (bool) -- same as for eachpoint()

  • clean (bool) -- call clean() afterwards to have a clean shape

  • self (T) --

例外:

ValueError -- if no solids or compounds are found in the stack or parent chain

戻り値:

a CQ object that contains the resulting solid

戻り値の型:

T

cutThruAll(clean: bool = True, taper: float = 0) T[ソース]

Use all un-extruded wires in the parent chain to create a prismatic cut from existing solid. Cuts through all material in both normal directions of workplane.

Similar to extrude, except that a solid in the parent chain is required to remove material from. cutThruAll always removes material from a part.

パラメータ:
  • clean (bool) -- call clean() afterwards to have a clean shape

  • self (T) --

  • taper (float) --

例外:
  • ValueError -- if there is no solid to subtract from in the chain

  • ValueError -- if there are no pending wires to cut with

戻り値:

a CQ object with the resulting object selected

戻り値の型:

T

see cutBlind() to cut material to a limited depth

cylinder(height: float, radius: float, direct: ~cadquery.occ_impl.geom.Vector = Vector: (0.0, 0.0, 1.0), angle: float = 360, centered: ~typing.Union[bool, ~typing.Tuple[bool, bool, bool]] = True, combine: ~typing.Union[bool, ~typing.Literal['cut', 'a', 's']] = True, clean: bool = True) T[ソース]

Returns a cylinder with the specified radius and height for each point on the stack

パラメータ:
  • height (float) -- The height of the cylinder

  • radius (float) -- The radius of the cylinder

  • direct (A three-tuple) -- The direction axis for the creation of the cylinder

  • angle (float > 0) -- The angle to sweep the cylinder arc through

  • centered (Union[bool, Tuple[bool, bool, bool]]) -- If True, the cylinder will be centered around the reference point. If False, the corner of a bounding box around the cylinder will be on the reference point and it will extend in the positive x, y and z directions. Can also use a 3-tuple to specify centering along each axis.

  • combine (true to combine shapes, false otherwise) -- Whether the results should be combined with other solids on the stack (and each other)

  • clean (bool) -- call clean() afterwards to have a clean shape

  • self (T) --

戻り値:

A cylinder object for each point on the stack

戻り値の型:

T

One cylinder is created for each item on the current stack. If no items are on the stack, one cylinder is created using the current workplane center.

If combine is true, the result will be a single object on the stack. If a solid was found in the chain, the result is that solid with all cylinders produced fused onto it otherwise, the result is the combination of all the produced cylinders.

If combine is false, the result will be a list of the cylinders produced.

each(callback: Callable[[Union[Vector, Location, Shape, Sketch]], Shape], useLocalCoordinates: bool = False, combine: Union[bool, Literal['cut', 'a', 's']] = True, clean: bool = True) T[ソース]

Runs the provided function on each value in the stack, and collects the return values into a new CQ object.

Special note: a newly created workplane always has its center point as its only stack item

パラメータ:
  • callBackFunction -- the function to call for each item on the current stack.

  • useLocalCoordinates (bool) -- should values be converted from local coordinates first?

  • combine (Union[bool, Literal['cut', 'a', 's']]) -- True or "a" to combine the resulting solid with parent solids if found, "cut" or "s" to remove the resulting solid from the parent solids if found. False to keep the resulting solid separated from the parent solids.

  • clean (bool) -- call clean() afterwards to have a clean shape

  • self (T) --

  • callback (Callable[[Union[Vector, Location, Shape, Sketch]], Shape]) --

戻り値の型:

T

The callback function must accept one argument, which is the item on the stack, and return one object, which is collected. If the function returns None, nothing is added to the stack. The object passed into the callBackFunction is potentially transformed to local coordinates, if useLocalCoordinates is true

useLocalCoordinates is very useful for plugin developers.

If false, the callback function is assumed to be working in global coordinates. Objects created are added as-is, and objects passed into the function are sent in using global coordinates

If true, the calling function is assumed to be working in local coordinates. Objects are transformed to local coordinates before they are passed into the callback method, and result objects are transformed to global coordinates after they are returned.

This allows plugin developers to create objects in local coordinates, without worrying about the fact that the working plane is different than the global coordinate system.

TODO: wrapper object for Wire will clean up forConstruction flag everywhere

eachpoint(callback: Callable[[Location], Shape], useLocalCoordinates: bool = False, combine: Union[bool, Literal['cut', 'a', 's']] = False, clean: bool = True) T[ソース]

Same as each(), except each item on the stack is converted into a point before it is passed into the callback function.

戻り値:

CadQuery object which contains a list of vectors (points ) on its stack.

パラメータ:
  • useLocalCoordinates (bool) -- should points be in local or global coordinates

  • combine (Union[bool, Literal['cut', 'a', 's']]) -- True or "a" to combine the resulting solid with parent solids if found, "cut" or "s" to remove the resulting solid from the parent solids if found. False to keep the resulting solid separated from the parent solids.

  • clean (bool) -- call clean() afterwards to have a clean shape

  • self (T) --

  • callback (Callable[[Location], Shape]) --

戻り値の型:

T

The resulting object has a point on the stack for each object on the original stack. Vertices and points remain a point. Faces, Wires, Solids, Edges, and Shells are converted to a point by using their center of mass.

If the stack has zero length, a single point is returned, which is the center of the current workplane/coordinate system

edges(selector: Optional[Union[str, Selector]] = None, tag: Optional[str] = None) T[ソース]

Select the edges of objects on the stack, optionally filtering the selection. If there are multiple objects on the stack, the edges of all objects are collected and a list of all the distinct edges is returned.

パラメータ:
  • selector (Optional[Union[str, Selector]]) -- optional Selector object, or string selector expression (see StringSyntaxSelector)

  • tag (Optional[str]) -- if set, search the tagged object instead of self

  • self (T) --

戻り値:

a CQ object whose stack contains all of the distinct edges of all objects on the current stack, filtered by the provided selector.

戻り値の型:

T

If there are no edges for any objects on the current stack, an empty CQ object is returned

The typical use is to select the edges of a single object on the stack. For example:

Workplane().box(1, 1, 1).faces("+Z").edges().size()

returns 4, because the topmost face of a cube will contain four edges. Similarly:

Workplane().box(1, 1, 1).edges().size()

returns 12, because a cube has a total of 12 edges, And:

Workplane().box(1, 1, 1).edges("|Z").size()

returns 4, because a cube has 4 edges parallel to the z direction

ellipse(x_radius: float, y_radius: float, rotation_angle: float = 0.0, forConstruction: bool = False) T[ソース]

Make an ellipse for each item on the stack.

パラメータ:
  • x_radius (float) -- x radius of the ellipse (x-axis of plane the ellipse should lie in)

  • y_radius (float) -- y radius of the ellipse (y-axis of plane the ellipse should lie in)

  • rotation_angle (float) -- angle to rotate the ellipse

  • forConstruction (true if the wires are for reference, false if they are creating part geometry) -- should the new wires be reference geometry only?

  • self (T) --

戻り値:

a new CQ object with the created wires on the stack

戻り値の型:

T

NOTE Due to a bug in opencascade (https://tracker.dev.opencascade.org/view.php?id=31290) the center of mass (equals center for next shape) is shifted. To create concentric ellipses use:

Workplane("XY").center(10, 20).ellipse(100, 10).center(0, 0).ellipse(50, 5)
ellipseArc(x_radius: float, y_radius: float, angle1: float = 360, angle2: float = 360, rotation_angle: float = 0.0, sense: Literal[- 1, 1] = 1, forConstruction: bool = False, startAtCurrent: bool = True, makeWire: bool = False) T[ソース]

Draw an elliptical arc with x and y radiuses either with start point at current point or or current point being the center of the arc

パラメータ:
  • x_radius (float) -- x radius of the ellipse (along the x-axis of plane the ellipse should lie in)

  • y_radius (float) -- y radius of the ellipse (along the y-axis of plane the ellipse should lie in)

  • angle1 (float) -- start angle of arc

  • angle2 (float) -- end angle of arc (angle2 == angle1 return closed ellipse = default)

  • rotation_angle (float) -- angle to rotate the created ellipse / arc

  • sense (Literal[-1, 1]) -- clockwise (-1) or counter clockwise (1)

  • startAtCurrent (bool) -- True: start point of arc is moved to current point; False: center of arc is on current point

  • makeWire (bool) -- convert the resulting arc edge to a wire

  • self (T) --

  • forConstruction (bool) --

戻り値の型:

T

end(n: int = 1) Workplane[ソース]

Return the nth parent of this CQ element

パラメータ:

n (int) -- number of ancestor to return (default: 1)

戻り値の型:

a CQ object

Raises:

ValueError if there are no more parents in the chain.

For example:

CQ(obj).faces("+Z").vertices().end()

will return the same as:

CQ(obj).faces("+Z")
exportSvg(fileName: str) None[ソース]

Exports the first item on the stack as an SVG file

For testing purposes mainly.

パラメータ:

fileName (str) -- the filename to export, absolute path to the file

戻り値の型:

None

extrude(until: Union[float, Literal['next', 'last'], Face], combine: Union[bool, Literal['cut', 'a', 's']] = True, clean: bool = True, both: bool = False, taper: Optional[float] = None) T[ソース]

Use all un-extruded wires in the parent chain to create a prismatic solid.

パラメータ:
  • until (Union[float, Literal['next', 'last'], Face]) -- The distance to extrude, normal to the workplane plane. When a float is passed, the extrusion extends this far and a negative value is in the opposite direction to the normal of the plane. The string "next" extrudes until the next face orthogonal to the wire normal. "last" extrudes to the last face. If a object of type Face is passed then the extrusion will extend until this face. Note that the Workplane must contain a Solid for extruding to a given face.

  • combine (Union[bool, Literal['cut', 'a', 's']]) -- True or "a" to combine the resulting solid with parent solids if found, "cut" or "s" to remove the resulting solid from the parent solids if found. False to keep the resulting solid separated from the parent solids.

  • clean (bool) -- call clean() afterwards to have a clean shape

  • both (bool) -- extrude in both directions symmetrically

  • taper (Optional[float]) -- angle for optional tapered extrusion

  • self (T) --

戻り値:

a CQ object with the resulting solid selected.

戻り値の型:

T

The returned object is always a CQ object, and depends on whether combine is True, and whether a context solid is already defined:

  • if combine is False, the new value is pushed onto the stack. Note that when extruding

    until a specified face, combine can not be False

  • if combine is true, the value is combined with the context solid if it exists,

    and the resulting solid becomes the new context solid.

faces(selector: Optional[Union[str, Selector]] = None, tag: Optional[str] = None) T[ソース]

Select the faces of objects on the stack, optionally filtering the selection. If there are multiple objects on the stack, the faces of all objects are collected and a list of all the distinct faces is returned.

パラメータ:
  • selector (Optional[Union[str, Selector]]) -- optional Selector object, or string selector expression (see StringSyntaxSelector)

  • tag (Optional[str]) -- if set, search the tagged object instead of self

  • self (T) --

戻り値:

a CQ object whose stack contains all of the distinct faces of all objects on the current stack, filtered by the provided selector.

戻り値の型:

T

If there are no faces for any objects on the current stack, an empty CQ object is returned.

The typical use is to select the faces of a single object on the stack. For example:

Workplane().box(1, 1, 1).faces("+Z").size()

returns 1, because a cube has one face with a normal in the +Z direction. Similarly:

Workplane().box(1, 1, 1).faces().size()

returns 6, because a cube has a total of 6 faces, And:

Workplane().box(1, 1, 1).faces("|Z").size()

returns 2, because a cube has 2 faces having normals parallel to the z direction

fillet(radius: float) T[ソース]

Fillets a solid on the selected edges.

The edges on the stack are filleted. The solid to which the edges belong must be in the parent chain of the selected edges.

パラメータ:
  • radius (float) -- the radius of the fillet, must be > zero

  • self (T) --

例外:
  • ValueError -- if at least one edge is not selected

  • ValueError -- if the solid containing the edge is not in the chain

戻り値:

CQ object with the resulting solid selected.

戻り値の型:

T

This example will create a unit cube, with the top edges filleted:

s = Workplane().box(1, 1, 1).faces("+Z").edges().fillet(0.1)
findFace(searchStack: bool = True, searchParents: bool = True) Face[ソース]

Finds the first face object in the chain, searching from the current node backwards through parents until one is found.

パラメータ:
  • searchStack (bool) -- should objects on the stack be searched first.

  • searchParents (bool) -- should parents be searched?

戻り値:

A face or None if no face is found.

戻り値の型:

Face

findSolid(searchStack: bool = True, searchParents: bool = True) Union[Solid, Compound][ソース]

Finds the first solid object in the chain, searching from the current node backwards through parents until one is found.

パラメータ:
  • searchStack (bool) -- should objects on the stack be searched first?

  • searchParents (bool) -- should parents be searched?

例外:

ValueError -- if no solid is found

戻り値の型:

Union[Solid, Compound]

This function is very important for chains that are modifying a single parent object, most often a solid.

Most of the time, a chain defines or selects a solid, and then modifies it using workplanes or other operations.

Plugin Developers should make use of this method to find the solid that should be modified, if the plugin implements a unary operation, or if the operation will automatically merge its results with an object already on the stack.

first() T[ソース]

Return the first item on the stack

戻り値:

the first item on the stack.

戻り値の型:

a CQ object

パラメータ:

self (T) --

hLine(distance: float, forConstruction: bool = False) T[ソース]

Make a horizontal line from the current point the provided distance

パラメータ:
  • distance (float) --

    1. distance from current point

  • self (T) --

  • forConstruction (bool) --

戻り値:

the Workplane object with the current point at the end of the new line

戻り値の型:

T

hLineTo(xCoord: float, forConstruction: bool = False) T[ソース]

Make a horizontal line from the current point to the provided x coordinate.

Useful if it is more convenient to specify the end location rather than distance, as in hLine()

パラメータ:
  • xCoord (float) -- x coordinate for the end of the line

  • self (T) --

  • forConstruction (bool) --

戻り値:

the Workplane object with the current point at the end of the new line

戻り値の型:

T

hole(diameter: float, depth: Optional[float] = None, clean: bool = True) T[ソース]

Makes a hole for each item on the stack.

パラメータ:
  • diameter (float) -- the diameter of the hole

  • depth (float > 0 or None to drill thru the entire part.) -- the depth of the hole

  • clean (bool) -- call clean() afterwards to have a clean shape

  • self (T) --

戻り値の型:

T

The surface of the hole is at the current workplane.

One hole is created for each item on the stack. A very common use case is to use a construction rectangle to define the centers of a set of holes, like so:

s = (
    Workplane()
    .box(2, 4, 0.5)
    .faces(">Z")
    .workplane()
    .rect(1.5, 3.5, forConstruction=True)
    .vertices()
    .hole(0.125, 82)
)

This sample creates a plate with a set of holes at the corners.

Plugin Note: this is one example of the power of plugins. CounterSunk holes are quite time consuming to create, but are quite easily defined by users.

see cboreHole() and cskHole() to make counterbores or countersinks

interpPlate(surf_edges: Union[Sequence[Union[Tuple[float, float], Tuple[float, float, float], Vector]], Sequence[Union[Edge, Wire]], Workplane], surf_pts: Sequence[Union[Tuple[float, float], Tuple[float, float, float], Vector]] = [], thickness: float = 0, combine: Union[bool, Literal['cut', 'a', 's']] = False, clean: bool = True, degree: int = 3, nbPtsOnCur: int = 15, nbIter: int = 2, anisotropy: bool = False, tol2d: float = 1e-05, tol3d: float = 0.0001, tolAng: float = 0.01, tolCurv: float = 0.1, maxDeg: int = 8, maxSegments: int = 9) T[ソース]

Returns a plate surface that is 'thickness' thick, enclosed by 'surf_edge_pts' points, and going through 'surf_pts' points. Using pushPoints directly with interpPlate and combine=True, can be very resource intensive depending on the complexity of the shape. In this case set combine=False.

パラメータ:
  • surf_edges (Union[Sequence[Union[Tuple[float, float], Tuple[float, float, float], Vector]], Sequence[Union[Edge, Wire]], Workplane]) -- list of [x,y,z] ordered coordinates or list of ordered or unordered edges, wires

  • surf_pts (Sequence[Union[Tuple[float, float], Tuple[float, float, float], Vector]]) -- list of points (uses only edges if [])

  • thickness (float) -- value may be negative or positive depending on thickening direction (2D surface if 0)

  • combine (Union[bool, Literal['cut', 'a', 's']]) -- should the results be combined with other solids on the stack (and each other)?

  • clean (bool) -- call clean() afterwards to have a clean shape

  • degree (int) -- >= 2

  • nbPtsOnCur (int) -- number of points on curve >= 15

  • nbIter (int) -- number of iterations >= 2

  • anisotropy (bool) -- = bool Anisotropy

  • tol2d (float) -- 2D tolerance

  • tol3d (float) -- 3D tolerance

  • tolAng (float) -- angular tolerance

  • tolCurv (float) -- tolerance for curvature

  • maxDeg (int) -- highest polynomial degree >= 2

  • maxSegments (int) -- greatest number of segments >= 2

  • self (T) --

戻り値の型:

T

intersect(toIntersect: Union[Workplane, Solid, Compound], clean: bool = True, tol: Optional[float] = None) T[ソース]

Intersects the provided solid from the current solid.

パラメータ:
  • toIntersect (Union[Workplane, Solid, Compound]) -- a solid object, or a Workplane object having a solid

  • clean (bool) -- call clean() afterwards to have a clean shape

  • tol (Optional[float]) -- tolerance value for fuzzy bool operation mode (default None)

  • self (T) --

例外:

ValueError -- if there is no solid to intersect with in the chain

戻り値:

a Workplane object with the resulting object selected

戻り値の型:

T

item(i: int) T[ソース]

Return the ith item on the stack.

戻り値の型:

a CQ object

パラメータ:
  • self (T) --

  • i (int) --

largestDimension() float[ソース]

Finds the largest dimension in the stack.

Used internally to create thru features, this is how you can compute how long or wide a feature must be to make sure to cut through all of the material

例外:

ValueError -- if no solids or compounds are found

戻り値:

A value representing the largest dimension of the first solid on the stack

戻り値の型:

float

last() T[ソース]

Return the last item on the stack.

戻り値の型:

a CQ object

パラメータ:

self (T) --

line(xDist: float, yDist: float, forConstruction: bool = False) T[ソース]

Make a line from the current point to the provided point, using dimensions relative to the current point

パラメータ:
  • xDist (float) -- x distance from current point

  • yDist (float) -- y distance from current point

  • self (T) --

  • forConstruction (bool) --

戻り値:

the workplane object with the current point at the end of the new line

戻り値の型:

T

see lineTo() if you want to use absolute coordinates to make a line instead.

lineTo(x: float, y: float, forConstruction: bool = False) T[ソース]

Make a line from the current point to the provided point

パラメータ:
  • x (float) -- the x point, in workplane plane coordinates

  • y (float) -- the y point, in workplane plane coordinates

  • self (T) --

  • forConstruction (bool) --

戻り値:

the Workplane object with the current point at the end of the new line

戻り値の型:

T

See line() if you want to use relative dimensions to make a line instead.

loft(ruled: bool = False, combine: Union[bool, Literal['cut', 'a', 's']] = True, clean: bool = True) T[ソース]

Make a lofted solid, through the set of wires.

パラメータ:
  • ruled (bool) -- When set to True connects each section linearly and without continuity

  • combine (Union[bool, Literal['cut', 'a', 's']]) -- True or "a" to combine the resulting solid with parent solids if found, "cut" or "s" to remove the resulting solid from the parent solids if found. False to keep the resulting solid separated from the parent solids.

  • clean (bool) -- call clean() afterwards to have a clean shape

  • self (T) --

戻り値:

a Workplane object containing the created loft

戻り値の型:

T

mirror(mirrorPlane: Union[Literal['XY', 'YX', 'XZ', 'ZX', 'YZ', 'ZY'], Tuple[float, float], Tuple[float, float, float], Vector, Face, Workplane] = 'XY', basePointVector: Optional[Union[Tuple[float, float], Tuple[float, float, float], Vector]] = None, union: bool = False) T[ソース]

Mirror a single CQ object.

パラメータ:
  • mirrorPlane (string, one of "XY", "YX", "XZ", "ZX", "YZ", "ZY" the planes or the normal vector of the plane eg (1,0,0) or a Face object) -- the plane to mirror about

  • basePointVector (Optional[Union[Tuple[float, float], Tuple[float, float, float], Vector]]) -- the base point to mirror about (this is overwritten if a Face is passed)

  • union (bool) -- If true will perform a union operation on the mirrored object

  • self (T) --

戻り値の型:

T

mirrorX() T[ソース]

Mirror entities around the x axis of the workplane plane.

戻り値:

a new object with any free edges consolidated into as few wires as possible.

パラメータ:

self (T) --

戻り値の型:

T

All free edges are collected into a wire, and then the wire is mirrored, and finally joined into a new wire

Typically used to make creating wires with symmetry easier.

mirrorY() T[ソース]

Mirror entities around the y axis of the workplane plane.

戻り値:

a new object with any free edges consolidated into as few wires as possible.

パラメータ:

self (T) --

戻り値の型:

T

All free edges are collected into a wire, and then the wire is mirrored, and finally joined into a new wire

Typically used to make creating wires with symmetry easier. This line of code:

s = Workplane().lineTo(2, 2).threePointArc((3, 1), (2, 0)).mirrorX().extrude(0.25)

Produces a flat, heart shaped object

move(xDist: float = 0, yDist: float = 0) T[ソース]

Move the specified distance from the current point, without drawing.

パラメータ:
  • xDist (float, or none for zero) -- desired x distance, in local coordinates

  • yDist (float, or none for zero.) -- desired y distance, in local coordinates

  • self (T) --

戻り値の型:

T

Not to be confused with center(), which moves the center of the entire workplane, this method only moves the current point ( and therefore does not affect objects already drawn ).

See moveTo() to do the same thing but using absolute coordinates

moveTo(x: float = 0, y: float = 0) T[ソース]

Move to the specified point, without drawing.

パラメータ:
  • x (float, or none for zero) -- desired x location, in local coordinates

  • y (float, or none for zero.) -- desired y location, in local coordinates

  • self (T) --

戻り値の型:

T

Not to be confused with center(), which moves the center of the entire workplane, this method only moves the current point ( and therefore does not affect objects already drawn ).

See move() to do the same thing but using relative dimensions

newObject(objlist: Iterable[Union[Vector, Location, Shape, Sketch]]) T[ソース]

Create a new workplane object from this one.

Overrides CQ.newObject, and should be used by extensions, plugins, and subclasses to create new objects.

パラメータ:
  • objlist (a list of CAD primitives) -- new objects to put on the stack

  • self (T) --

戻り値:

a new Workplane object with the current workplane as a parent.

戻り値の型:

T

offset2D(d: float, kind: Literal['arc', 'intersection', 'tangent'] = 'arc', forConstruction: bool = False) T[ソース]

Creates a 2D offset wire.

パラメータ:
  • d (float) -- thickness. Negative thickness denotes offset to inside.

  • kind (Literal['arc', 'intersection', 'tangent']) -- offset kind. Use "arc" for rounded and "intersection" for sharp edges (default: "arc")

  • forConstruction (bool) -- Should the result be added to pending wires?

  • self (T) --

戻り値:

CQ object with resulting wire(s).

戻り値の型:

T

parametricCurve(func: Callable[[float], Union[Tuple[float, float], Tuple[float, float, float], Vector]], N: int = 400, start: float = 0, stop: float = 1, tol: float = 1e-06, minDeg: int = 1, maxDeg: int = 6, smoothing: Optional[Tuple[float, float, float]] = (1, 1, 1), makeWire: bool = True) T[ソース]

Create a spline curve approximating the provided function.

パラメータ:
  • func (float --> (float,float,float)) -- function f(t) that will generate (x,y,z) pairs

  • N (int) -- number of points for discretization

  • start (float) -- starting value of the parameter t

  • stop (float) -- final value of the parameter t

  • tol (float) -- tolerance of the algorithm (default: 1e-6)

  • minDeg (int) -- minimum spline degree (default: 1)

  • maxDeg (int) -- maximum spline degree (default: 6)

  • smoothing (Optional[Tuple[float, float, float]]) -- optional parameters for the variational smoothing algorithm (default: (1,1,1))

  • makeWire (bool) -- convert the resulting spline edge to a wire

  • self (T) --

戻り値:

a Workplane object with the current point unchanged

戻り値の型:

T

parametricSurface(func: Callable[[float, float], Union[Tuple[float, float], Tuple[float, float, float], Vector]], N: int = 20, start: float = 0, stop: float = 1, tol: float = 0.01, minDeg: int = 1, maxDeg: int = 6, smoothing: Optional[Tuple[float, float, float]] = (1, 1, 1)) T[ソース]

Create a spline surface approximating the provided function.

パラメータ:
  • func ((float,float) --> (float,float,float)) -- function f(u,v) that will generate (x,y,z) pairs

  • N (int) -- number of points for discretization in one direction

  • start (float) -- starting value of the parameters u,v

  • stop (float) -- final value of the parameters u,v

  • tol (float) -- tolerance used by the approximation algorithm (default: 1e-3)

  • minDeg (int) -- minimum spline degree (default: 1)

  • maxDeg (int) -- maximum spline degree (default: 3)

  • smoothing (Optional[Tuple[float, float, float]]) -- optional parameters for the variational smoothing algorithm (default: (1,1,1))

  • self (T) --

戻り値:

a Workplane object with the current point unchanged

戻り値の型:

T

This method might be unstable and may require tuning of the tol parameter.

placeSketch(*sketches: Sketch) T[ソース]

Place the provided sketch(es) based on the current items on the stack.

戻り値:

Workplane object with the sketch added.

パラメータ:
  • self (T) --

  • sketches (Sketch) --

戻り値の型:

T

polarArray(radius: float, startAngle: float, angle: float, count: int, fill: bool = True, rotate: bool = True) T[ソース]

Creates a polar array of points and pushes them onto the stack. The zero degree reference angle is located along the local X-axis.

パラメータ:
  • radius (float) -- Radius of the array.

  • startAngle (float) -- Starting angle (degrees) of array. Zero degrees is situated along the local X-axis.

  • angle (float) -- The angle (degrees) to fill with elements. A positive value will fill in the counter-clockwise direction. If fill is False, angle is the angle between elements.

  • count (int) -- Number of elements in array. (count >= 1)

  • fill (bool) -- Interpret the angle as total if True (default: True).

  • rotate (bool) -- Rotate every item (default: True).

  • self (T) --

戻り値の型:

T

polarLine(distance: float, angle: float, forConstruction: bool = False) T[ソース]

Make a line of the given length, at the given angle from the current point

パラメータ:
  • distance (float) -- distance of the end of the line from the current point

  • angle (float) -- angle of the vector to the end of the line with the x-axis

  • self (T) --

  • forConstruction (bool) --

戻り値:

the Workplane object with the current point at the end of the new line

戻り値の型:

T

polarLineTo(distance: float, angle: float, forConstruction: bool = False) T[ソース]

Make a line from the current point to the given polar coordinates

Useful if it is more convenient to specify the end location rather than the distance and angle from the current point

パラメータ:
  • distance (float) -- distance of the end of the line from the origin

  • angle (float) -- angle of the vector to the end of the line with the x-axis

  • self (T) --

  • forConstruction (bool) --

戻り値:

the Workplane object with the current point at the end of the new line

戻り値の型:

T

polygon(nSides: int, diameter: float, forConstruction: bool = False, circumscribed: bool = False) T[ソース]

Make a polygon for each item on the stack.

By default, each polygon is created by inscribing it in a circle of the specified diameter, such that the first vertex is oriented in the x direction. Alternatively, each polygon can be created by circumscribing it around a circle of the specified diameter, such that the midpoint of the first edge is oriented in the x direction. Circumscribed polygons are thus rotated by pi/nSides radians relative to the inscribed polygon. This ensures the extent of the polygon along the positive x-axis is always known. This has the advantage of not requiring additional formulae for purposes such as tiling on the x-axis (at least for even sided polygons).

パラメータ:
  • nSides (int) -- number of sides, must be >= 3

  • diameter (float) -- the diameter of the circle for constructing the polygon

  • circumscribed (true to create the polygon by circumscribing it about a circle, false to create the polygon by inscribing it in a circle) -- circumscribe the polygon about a circle

  • self (T) --

  • forConstruction (bool) --

戻り値:

a polygon wire

戻り値の型:

T

polyline(listOfXYTuple: Sequence[Union[Tuple[float, float], Tuple[float, float, float], Vector]], forConstruction: bool = False, includeCurrent: bool = False) T[ソース]

Create a polyline from a list of points

パラメータ:
  • listOfXYTuple (Sequence[Union[Tuple[float, float], Tuple[float, float, float], Vector]]) -- a list of points in Workplane coordinates (2D or 3D)

  • forConstruction (true if the edges are for reference, false if they are for creating geometry part geometry) -- whether or not the edges are used for reference

  • includeCurrent (bool) -- use current point as a starting point of the polyline

  • self (T) --

戻り値:

a new CQ object with a list of edges on the stack

戻り値の型:

T

NOTE most commonly, the resulting wire should be closed.

pushPoints(pntList: Iterable[Union[Tuple[float, float], Tuple[float, float, float], Vector, Location]]) T[ソース]

Pushes a list of points onto the stack as vertices. The points are in the 2D coordinate space of the workplane face

パラメータ:
  • pntList (list of 2-tuples, in local coordinates) -- a list of points to push onto the stack

  • self (T) --

戻り値:

a new workplane with the desired points on the stack.

戻り値の型:

T

A common use is to provide a list of points for a subsequent operation, such as creating circles or holes. This example creates a cube, and then drills three holes through it, based on three points:

s = (
    Workplane()
    .box(1, 1, 1)
    .faces(">Z")
    .workplane()
    .pushPoints([(-0.3, 0.3), (0.3, 0.3), (0, 0)])
)
body = s.circle(0.05).cutThruAll()

Here the circle function operates on all three points, and is then extruded to create three holes. See circle() for how it works.

radiusArc(endPoint: Union[Tuple[float, float], Tuple[float, float, float], Vector], radius: float, forConstruction: bool = False) T[ソース]

Draw an arc from the current point to endPoint with an arc defined by the radius.

パラメータ:
  • endPoint (2-tuple, in workplane coordinates) -- end point for the arc

  • radius (float, the radius of the arc between start point and end point.) -- the radius of the arc

  • self (T) --

  • forConstruction (bool) --

戻り値:

a workplane with the current point at the end of the arc

戻り値の型:

T

Given that a closed contour is drawn clockwise; A positive radius means convex arc and negative radius means concave arc.

rarray(xSpacing: float, ySpacing: float, xCount: int, yCount: int, center: Union[bool, Tuple[bool, bool]] = True) T[ソース]

Creates an array of points and pushes them onto the stack. If you want to position the array at another point, create another workplane that is shifted to the position you would like to use as a reference

パラメータ:
  • xSpacing (float) -- spacing between points in the x direction ( must be > 0)

  • ySpacing (float) -- spacing between points in the y direction ( must be > 0)

  • xCount (int) -- number of points ( > 0 )

  • yCount (int) -- number of points ( > 0 )

  • center (Union[bool, Tuple[bool, bool]]) -- If True, the array will be centered around the workplane center. If False, the lower corner will be on the reference point and the array will extend in the positive x and y directions. Can also use a 2-tuple to specify centering along each axis.

  • self (T) --

戻り値の型:

T

rect(xLen: float, yLen: float, centered: Union[bool, Tuple[bool, bool]] = True, forConstruction: bool = False) T[ソース]

Make a rectangle for each item on the stack.

パラメータ:
  • xLen (float) -- length in the x direction (in workplane coordinates)

  • yLen (float) -- length in the y direction (in workplane coordinates)

  • centered (Union[bool, Tuple[bool, bool]]) -- If True, the rectangle will be centered around the reference point. If False, the corner of the rectangle will be on the reference point and it will extend in the positive x and y directions. Can also use a 2-tuple to specify centering along each axis.

  • forConstruction (true if the wires are for reference, false if they are creating part geometry) -- should the new wires be reference geometry only?

  • self (T) --

戻り値:

a new CQ object with the created wires on the stack

戻り値の型:

T

A common use case is to use a for-construction rectangle to define the centers of a hole pattern:

s = Workplane().rect(4.0, 4.0, forConstruction=True).vertices().circle(0.25)

Creates 4 circles at the corners of a square centered on the origin.

Negative values for xLen and yLen are permitted, although they only have an effect when centered is False.

Future Enhancements:
  • project points not in the workplane plane onto the workplane plane

revolve(angleDegrees: float = 360.0, axisStart: Optional[Union[Tuple[float, float], Tuple[float, float, float], Vector]] = None, axisEnd: Optional[Union[Tuple[float, float], Tuple[float, float, float], Vector]] = None, combine: Union[bool, Literal['cut', 'a', 's']] = True, clean: bool = True) T[ソース]

Use all un-revolved wires in the parent chain to create a solid.

パラメータ:
  • angleDegrees (float, anything less than 360 degrees will leave the shape open) -- the angle to revolve through.

  • axisStart (Optional[Union[Tuple[float, float], Tuple[float, float, float], Vector]]) -- the start point of the axis of rotation

  • axisEnd (Optional[Union[Tuple[float, float], Tuple[float, float, float], Vector]]) -- the end point of the axis of rotation

  • combine (Union[bool, Literal['cut', 'a', 's']]) -- True or "a" to combine the resulting solid with parent solids if found, "cut" or "s" to remove the resulting solid from the parent solids if found. False to keep the resulting solid separated from the parent solids.

  • clean (bool) -- call clean() afterwards to have a clean shape

  • self (T) --

戻り値:

a CQ object with the resulting solid selected.

戻り値の型:

T

The returned object is always a CQ object, and depends on whether combine is True, and whether a context solid is already defined:

  • if combine is False, the new value is pushed onto the stack.

  • if combine is true, the value is combined with the context solid if it exists, and the resulting solid becomes the new context solid.

注釈

Keep in mind that axisStart and axisEnd are defined relative to the current Workplane center position. So if for example you want to revolve a circle centered at (10,0,0) around the Y axis, be sure to either move() (or moveTo()) the current Workplane position or specify axisStart and axisEnd with the correct vector position. In this example (0,0,0), (0,1,0) as axis coords would fail.

rotate(axisStartPoint: Union[Tuple[float, float], Tuple[float, float, float], Vector], axisEndPoint: Union[Tuple[float, float], Tuple[float, float, float], Vector], angleDegrees: float) T[ソース]

Returns a copy of all of the items on the stack rotated through and angle around the axis of rotation.

パラメータ:
  • axisStartPoint (a 3-tuple of floats) -- The first point of the axis of rotation

  • axisEndPoint (a 3-tuple of floats) -- The second point of the axis of rotation

  • angleDegrees (float) -- the rotation angle, in degrees

  • self (T) --

戻り値:

a CQ object

戻り値の型:

T

rotateAboutCenter(axisEndPoint: Union[Tuple[float, float], Tuple[float, float, float], Vector], angleDegrees: float) T[ソース]

Rotates all items on the stack by the specified angle, about the specified axis

The center of rotation is a vector starting at the center of the object on the stack, and ended at the specified point.

パラメータ:
  • axisEndPoint (a three-tuple in global coordinates) -- the second point of axis of rotation

  • angleDegrees (float) -- the rotation angle, in degrees

  • self (T) --

戻り値:

a CQ object, with all items rotated.

戻り値の型:

T

WARNING: This version returns the same CQ object instead of a new one-- the old object is not accessible.

Future Enhancements:
  • A version of this method that returns a transformed copy, rather than modifying the originals

  • This method doesn't expose a very good interface, because the axis of rotation could be inconsistent between multiple objects. This is because the beginning of the axis is variable, while the end is fixed. This is fine when operating on one object, but is not cool for multiple.

sagittaArc(endPoint: Union[Tuple[float, float], Tuple[float, float, float], Vector], sag: float, forConstruction: bool = False) T[ソース]

Draw an arc from the current point to endPoint with an arc defined by the sag (sagitta).

パラメータ:
  • endPoint (2-tuple, in workplane coordinates) -- end point for the arc

  • sag (float, perpendicular distance from arc center to arc baseline.) -- the sagitta of the arc

  • self (T) --

  • forConstruction (bool) --

戻り値:

a workplane with the current point at the end of the arc

戻り値の型:

T

The sagitta is the distance from the center of the arc to the arc base. Given that a closed contour is drawn clockwise; A positive sagitta means convex arc and negative sagitta means concave arc. See https://en.wikipedia.org/wiki/Sagitta_(geometry) for more information.

section(height: float = 0.0) T[ソース]

Slices current solid at the given height.

パラメータ:
  • height (float) -- height to slice at (default: 0)

  • self (T) --

例外:

ValueError -- if no solids or compounds are found

戻り値:

a CQ object with the resulting face(s).

戻り値の型:

T

shell(thickness: float, kind: Literal['arc', 'intersection'] = 'arc') T[ソース]

Remove the selected faces to create a shell of the specified thickness.

To shell, first create a solid, and in the same chain select the faces you wish to remove.

パラメータ:
  • thickness (float) -- thickness of the desired shell. Negative values shell inwards, positive values shell outwards.

  • kind (Literal['arc', 'intersection']) -- kind of join, arc or intersection (default: arc).

  • self (T) --

例外:

ValueError -- if the current stack contains objects that are not faces of a solid further up in the chain.

戻り値:

a CQ object with the resulting shelled solid selected.

戻り値の型:

T

This example will create a hollowed out unit cube, where the top most face is open, and all other walls are 0.2 units thick:

Workplane().box(1, 1, 1).faces("+Z").shell(0.2)

You can also select multiple faces at once. Here is an example that creates a three-walled corner, by removing three faces of a cube:

Workplane().box(10, 10, 10).faces(">Z or >X or <Y").shell(1)

Note: When sharp edges are shelled inwards, they remain sharp corners, but outward shells are automatically filleted (unless kind="intersection"), because an outward offset from a corner generates a radius.

shells(selector: Optional[Union[str, Selector]] = None, tag: Optional[str] = None) T[ソース]

Select the shells of objects on the stack, optionally filtering the selection. If there are multiple objects on the stack, the shells of all objects are collected and a list of all the distinct shells is returned.

パラメータ:
  • selector (Optional[Union[str, Selector]]) -- optional Selector object, or string selector expression (see StringSyntaxSelector)

  • tag (Optional[str]) -- if set, search the tagged object instead of self

  • self (T) --

戻り値:

a CQ object whose stack contains all of the distinct shells of all objects on the current stack, filtered by the provided selector.

戻り値の型:

T

If there are no shells for any objects on the current stack, an empty CQ object is returned

Most solids will have a single shell, which represents the outer surface. A shell will typically be composed of multiple faces.

siblings(kind: Literal['Vertex', 'Edge', 'Wire', 'Face', 'Shell', 'Solid', 'CompSolid', 'Compound'], level: int = 1, tag: Optional[str] = None) T[ソース]

Select topological siblings.

パラメータ:
  • kind (Literal['Vertex', 'Edge', 'Wire', 'Face', 'Shell', 'Solid', 'CompSolid', 'Compound']) -- kind of linking element, e.g. "Vertex" or "Edge"

  • level (int) -- level of relation - how many elements of kind are in the link

  • tag (Optional[str]) -- if set, search the tagged object instead of self

  • self (T) --

戻り値:

a Workplane object whose stack contains selected siblings.

戻り値の型:

T

size() int[ソース]

Return the number of objects currently on the stack

戻り値の型:

int

sketch() Sketch[ソース]

Initialize and return a sketch

戻り値:

Sketch object with the current workplane as a parent.

パラメータ:

self (T) --

戻り値の型:

Sketch

slot2D(length: float, diameter: float, angle: float = 0) T[ソース]

Creates a rounded slot for each point on the stack.

パラメータ:
  • diameter (float) -- desired diameter, or width, of slot

  • length (float) -- desired end to end length of slot

  • angle (float) -- angle of slot in degrees, with 0 being along x-axis

  • self (T) --

戻り値:

a new CQ object with the created wires on the stack

戻り値の型:

T

Can be used to create arrays of slots, such as in cooling applications:

Workplane().box(10, 25, 1).rarray(1, 2, 1, 10).slot2D(8, 1, 0).cutThruAll()
solids(selector: Optional[Union[str, Selector]] = None, tag: Optional[str] = None) T[ソース]

Select the solids of objects on the stack, optionally filtering the selection. If there are multiple objects on the stack, the solids of all objects are collected and a list of all the distinct solids is returned.

パラメータ:
  • selector (Optional[Union[str, Selector]]) -- optional Selector object, or string selector expression (see StringSyntaxSelector)

  • tag (Optional[str]) -- if set, search the tagged object instead of self

  • self (T) --

戻り値:

a CQ object whose stack contains all of the distinct solids of all objects on the current stack, filtered by the provided selector.

戻り値の型:

T

If there are no solids for any objects on the current stack, an empty CQ object is returned

The typical use is to select a single object on the stack. For example:

Workplane().box(1, 1, 1).solids().size()

returns 1, because a cube consists of one solid.

It is possible for a single CQ object ( or even a single CAD primitive ) to contain multiple solids.

sphere(radius: float, direct: Union[Tuple[float, float], Tuple[float, float, float], Vector] = (0, 0, 1), angle1: float = - 90, angle2: float = 90, angle3: float = 360, centered: Union[bool, Tuple[bool, bool, bool]] = True, combine: Union[bool, Literal['cut', 'a', 's']] = True, clean: bool = True) T[ソース]

Returns a 3D sphere with the specified radius for each point on the stack.

パラメータ:
  • radius (float) -- The radius of the sphere

  • direct (A three-tuple) -- The direction axis for the creation of the sphere

  • angle1 (float > 0) -- The first angle to sweep the sphere arc through

  • angle2 (float > 0) -- The second angle to sweep the sphere arc through

  • angle3 (float > 0) -- The third angle to sweep the sphere arc through

  • centered (Union[bool, Tuple[bool, bool, bool]]) -- If True, the sphere will be centered around the reference point. If False, the corner of a bounding box around the sphere will be on the reference point and it will extend in the positive x, y and z directions. Can also use a 3-tuple to specify centering along each axis.

  • combine (true to combine shapes, false otherwise) -- Whether the results should be combined with other solids on the stack (and each other)

  • clean (bool) -- call clean() afterwards to have a clean shape

  • self (T) --

戻り値:

A sphere object for each point on the stack

戻り値の型:

T

One sphere is created for each item on the current stack. If no items are on the stack, one box using the current workplane center is created.

If combine is true, the result will be a single object on the stack. If a solid was found in the chain, the result is that solid with all spheres produced fused onto it otherwise, the result is the combination of all the produced spheres.

If combine is false, the result will be a list of the spheres produced.

spline(listOfXYTuple: Iterable[Union[Tuple[float, float], Tuple[float, float, float], Vector]], tangents: Optional[Sequence[Union[Tuple[float, float], Tuple[float, float, float], Vector]]] = None, periodic: bool = False, parameters: Optional[Sequence[float]] = None, scale: bool = True, tol: Optional[float] = None, forConstruction: bool = False, includeCurrent: bool = False, makeWire: bool = False) T[ソース]

Create a spline interpolated through the provided points (2D or 3D).

パラメータ:
  • listOfXYTuple (Iterable[Union[Tuple[float, float], Tuple[float, float, float], Vector]]) -- points to interpolate through

  • tangents (Optional[Sequence[Union[Tuple[float, float], Tuple[float, float, float], Vector]]]) --

    vectors specifying the direction of the tangent to the curve at each of the specified interpolation points.

    If only 2 tangents are given, they will be used as the initial and final tangent.

    If some tangents are not specified (i.e., are None), no tangent constraint will be applied to the corresponding interpolation point.

    The spline will be C2 continuous at the interpolation points where no tangent constraint is specified, and C1 continuous at the points where a tangent constraint is specified.

  • periodic (bool) -- creation of periodic curves

  • parameters (Optional[Sequence[float]]) --

    the value of the parameter at each interpolation point. (The interpolated curve is represented as a vector-valued function of a scalar parameter.)

    If periodic == True, then len(parameters) must be len(interpolation points) + 1, otherwise len(parameters) must be equal to len(interpolation points).

  • scale (bool) --

    whether to scale the specified tangent vectors before interpolating.

    Each tangent is scaled, so it's length is equal to the derivative of the Lagrange interpolated curve.

    I.e., set this to True, if you want to use only the direction of the tangent vectors specified by tangents, but not their magnitude.

  • tol (Optional[float]) --

    tolerance of the algorithm (consult OCC documentation)

    Used to check that the specified points are not too close to each other, and that tangent vectors are not too short. (In either case interpolation may fail.)

    Set to None to use the default tolerance.

  • includeCurrent (bool) -- use current point as a starting point of the curve

  • makeWire (bool) -- convert the resulting spline edge to a wire

  • self (T) --

  • forConstruction (bool) --

戻り値:

a Workplane object with the current point at the end of the spline

戻り値の型:

T

The spline will begin at the current point, and end with the last point in the XY tuple list.

This example creates a block with a spline for one side:

s = Workplane(Plane.XY())
sPnts = [
    (2.75, 1.5),
    (2.5, 1.75),
    (2.0, 1.5),
    (1.5, 1.0),
    (1.0, 1.25),
    (0.5, 1.0),
    (0, 1.0),
]
r = s.lineTo(3.0, 0).lineTo(3.0, 1.0).spline(sPnts).close()
r = r.extrude(0.5)

WARNING It is fairly easy to create a list of points that cannot be correctly interpreted as a spline.

splineApprox(points: Iterable[Union[Tuple[float, float], Tuple[float, float, float], Vector]], tol: Optional[float] = 1e-06, minDeg: int = 1, maxDeg: int = 6, smoothing: Optional[Tuple[float, float, float]] = (1, 1, 1), forConstruction: bool = False, includeCurrent: bool = False, makeWire: bool = False) T[ソース]

Create a spline interpolated through the provided points (2D or 3D).

パラメータ:
  • points (Iterable[Union[Tuple[float, float], Tuple[float, float, float], Vector]]) -- points to interpolate through

  • tol (Optional[float]) -- tolerance of the algorithm (default: 1e-6)

  • minDeg (int) -- minimum spline degree (default: 1)

  • maxDeg (int) -- maximum spline degree (default: 6)

  • smoothing (Optional[Tuple[float, float, float]]) -- optional parameters for the variational smoothing algorithm (default: (1,1,1))

  • includeCurrent (bool) -- use current point as a starting point of the curve

  • makeWire (bool) -- convert the resulting spline edge to a wire

  • self (T) --

  • forConstruction (bool) --

戻り値:

a Workplane object with the current point at the end of the spline

戻り値の型:

T

WARNING for advanced users.

split(keepTop: bool = False, keepBottom: bool = False) T[ソース]
split(splitter: Union[T, Shape]) T

Splits a solid on the stack into two parts, optionally keeping the separate parts.

パラメータ:
  • keepTop (bool) -- True to keep the top, False or None to discard it

  • keepBottom (bool) -- True to keep the bottom, False or None to discard it

例外:
  • ValueError -- if keepTop and keepBottom are both false.

  • ValueError -- if there is no solid in the current stack or parent chain

戻り値:

CQ object with the desired objects on the stack.

The most common operation splits a solid and keeps one half. This sample creates a split bushing:

# drill a hole in the side
c = Workplane().box(1, 1, 1).faces(">Z").workplane().circle(0.25).cutThruAll()

# now cut it in half sideways
c = c.faces(">Y").workplane(-0.5).split(keepTop=True)
sweep(path: Union[Workplane, Wire, Edge], multisection: bool = False, sweepAlongWires: Optional[bool] = None, makeSolid: bool = True, isFrenet: bool = False, combine: Union[bool, Literal['cut', 'a', 's']] = True, clean: bool = True, transition: Literal['right', 'round', 'transformed'] = 'right', normal: Optional[Union[Tuple[float, float], Tuple[float, float, float], Vector]] = None, auxSpine: Optional[Workplane] = None) T[ソース]

Use all un-extruded wires in the parent chain to create a swept solid.

パラメータ:
  • path (Union[Workplane, Wire, Edge]) -- A wire along which the pending wires will be swept

  • multiSection -- False to create multiple swept from wires on the chain along path. True to create only one solid swept along path with shape following the list of wires on the chain

  • combine (Union[bool, Literal['cut', 'a', 's']]) -- True or "a" to combine the resulting solid with parent solids if found, "cut" or "s" to remove the resulting solid from the parent solids if found. False to keep the resulting solid separated from the parent solids.

  • clean (bool) -- call clean() afterwards to have a clean shape

  • transition (Literal['right', 'round', 'transformed']) -- handling of profile orientation at C1 path discontinuities. Possible values are {'transformed','round', 'right'} (default: 'right').

  • normal (Optional[Union[Tuple[float, float], Tuple[float, float, float], Vector]]) -- optional fixed normal for extrusion

  • auxSpine (Optional[Workplane]) -- a wire defining the binormal along the extrusion path

  • self (T) --

  • multisection (bool) --

  • sweepAlongWires (Optional[bool]) --

  • makeSolid (bool) --

  • isFrenet (bool) --

戻り値:

a CQ object with the resulting solid selected.

戻り値の型:

T

tag(name: str) T[ソース]

Tags the current CQ object for later reference.

パラメータ:
  • name (str) -- the name to tag this object with

  • self (T) --

戻り値:

self, a CQ object with tag applied

戻り値の型:

T

tangentArcPoint(endpoint: Union[Tuple[float, float], Tuple[float, float, float], Vector], forConstruction: bool = False, relative: bool = True) T[ソース]

Draw an arc as a tangent from the end of the current edge to endpoint.

パラメータ:
  • endpoint (2-tuple, 3-tuple or Vector) -- point for the arc to end at

  • relative (bool) -- True if endpoint is specified relative to the current point, False if endpoint is in workplane coordinates

  • self (T) --

  • forConstruction (bool) --

戻り値:

a Workplane object with an arc on the stack

戻り値の型:

T

Requires the the current first object on the stack is an Edge, as would be the case after a lineTo operation or similar.

text(txt: str, fontsize: float, distance: float, cut: bool = True, combine: Union[bool, Literal['cut', 'a', 's']] = False, clean: bool = True, font: str = 'Arial', fontPath: Optional[str] = None, kind: Literal['regular', 'bold', 'italic'] = 'regular', halign: Literal['center', 'left', 'right'] = 'center', valign: Literal['center', 'top', 'bottom'] = 'center') T[ソース]

Returns a 3D text.

パラメータ:
  • txt (str) -- text to be rendered

  • fontsize (float) -- size of the font in model units

  • distance (float, negative means opposite the normal direction) -- the distance to extrude or cut, normal to the workplane plane

  • cut (bool) -- True to cut the resulting solid from the parent solids if found

  • combine (Union[bool, Literal['cut', 'a', 's']]) -- True or "a" to combine the resulting solid with parent solids if found, "cut" or "s" to remove the resulting solid from the parent solids if found. False to keep the resulting solid separated from the parent solids.

  • clean (bool) -- call clean() afterwards to have a clean shape

  • font (str) -- font name

  • fontPath (Optional[str]) -- path to font file

  • kind (Literal['regular', 'bold', 'italic']) -- font type

  • halign (Literal['center', 'left', 'right']) -- horizontal alignment

  • valign (Literal['center', 'top', 'bottom']) -- vertical alignment

  • self (T) --

戻り値:

a CQ object with the resulting solid selected

戻り値の型:

T

The returned object is always a Workplane object, and depends on whether combine is True, and whether a context solid is already defined:

  • if combine is False, the new value is pushed onto the stack.

  • if combine is true, the value is combined with the context solid if it exists, and the resulting solid becomes the new context solid.

Examples:

cq.Workplane().text("CadQuery", 5, 1)

Specify the font (name), and kind to use an installed system font:

cq.Workplane().text("CadQuery", 5, 1, font="Liberation Sans Narrow", kind="italic")

Specify fontPath to use a font from a given file:

cq.Workplane().text("CadQuery", 5, 1, fontPath="/opt/fonts/texgyrecursor-bold.otf")

Cutting text into a solid:

cq.Workplane().box(8, 8, 8).faces(">Z").workplane().text("Z", 5, -1.0)
threePointArc(point1: Union[Tuple[float, float], Tuple[float, float, float], Vector], point2: Union[Tuple[float, float], Tuple[float, float, float], Vector], forConstruction: bool = False) T[ソース]

Draw an arc from the current point, through point1, and ending at point2

パラメータ:
  • point1 (2-tuple, in workplane coordinates) -- point to draw through

  • point2 (2-tuple, in workplane coordinates) -- end point for the arc

  • self (T) --

  • forConstruction (bool) --

戻り値:

a workplane with the current point at the end of the arc

戻り値の型:

T

Future Enhancements:

provide a version that allows an arc using relative measures provide a centerpoint arc provide tangent arcs

toOCC() Any[ソース]

Directly returns the wrapped OCCT object.

戻り値:

The wrapped OCCT object

戻り値の型:

TopoDS_Shape or a subclass

toPending() T[ソース]

Adds wires/edges to pendingWires/pendingEdges.

戻り値:

same CQ object with updated context.

パラメータ:

self (T) --

戻り値の型:

T

toSvg(opts: Optional[Any] = None) str[ソース]

Returns svg text that represents the first item on the stack.

for testing purposes.

パラメータ:

opts (dictionary, width and height) -- svg formatting options

戻り値:

a string that contains SVG that represents this item.

戻り値の型:

str

transformed(rotate: Union[Tuple[float, float], Tuple[float, float, float], Vector] = (0, 0, 0), offset: Union[Tuple[float, float], Tuple[float, float, float], Vector] = (0, 0, 0)) T[ソース]

Create a new workplane based on the current one. The origin of the new plane is located at the existing origin+offset vector, where offset is given in coordinates local to the current plane The new plane is rotated through the angles specified by the components of the rotation vector.

パラメータ:
  • rotate (Union[Tuple[float, float], Tuple[float, float, float], Vector]) -- 3-tuple of angles to rotate, in degrees relative to work plane coordinates

  • offset (Union[Tuple[float, float], Tuple[float, float, float], Vector]) -- 3-tuple to offset the new plane, in local work plane coordinates

  • self (T) --

戻り値:

a new work plane, transformed as requested

戻り値の型:

T

translate(vec: Union[Tuple[float, float], Tuple[float, float, float], Vector]) T[ソース]

Returns a copy of all of the items on the stack moved by the specified translation vector.

パラメータ:
  • tupleDistance (a 3-tuple of float) -- distance to move, in global coordinates

  • self (T) --

  • vec (Union[Tuple[float, float], Tuple[float, float, float], Vector]) --

戻り値:

a CQ object

戻り値の型:

T

twistExtrude(distance: float, angleDegrees: float, combine: Union[bool, Literal['cut', 'a', 's']] = True, clean: bool = True) T[ソース]

Extrudes a wire in the direction normal to the plane, but also twists by the specified angle over the length of the extrusion.

The center point of the rotation will be the center of the workplane.

See extrude for more details, since this method is the same except for the the addition of the angle. In fact, if angle=0, the result is the same as a linear extrude.

NOTE This method can create complex calculations, so be careful using it with complex geometries

パラメータ:
  • distance (float) -- the distance to extrude normal to the workplane

  • angle -- angle (in degrees) to rotate through the extrusion

  • combine (Union[bool, Literal['cut', 'a', 's']]) -- True or "a" to combine the resulting solid with parent solids if found, "cut" or "s" to remove the resulting solid from the parent solids if found. False to keep the resulting solid separated from the parent solids.

  • clean (bool) -- call clean() afterwards to have a clean shape

  • self (T) --

  • angleDegrees (float) --

戻り値:

a CQ object with the resulting solid selected.

戻り値の型:

T

union(toUnion: Optional[Union[Workplane, Solid, Compound]] = None, clean: bool = True, glue: bool = False, tol: Optional[float] = None) T[ソース]

Unions all of the items on the stack of toUnion with the current solid. If there is no current solid, the items in toUnion are unioned together.

パラメータ:
  • toUnion (Optional[Union[Workplane, Solid, Compound]]) -- a solid object, or a Workplane object having a solid

  • clean (bool) -- call clean() afterwards to have a clean shape (default True)

  • glue (bool) -- use a faster gluing mode for non-overlapping shapes (default False)

  • tol (Optional[float]) -- tolerance value for fuzzy bool operation mode (default None)

  • self (T) --

Raises:

ValueError if there is no solid to add to in the chain

戻り値:

a Workplane object with the resulting object selected

戻り値の型:

T

vLine(distance: float, forConstruction: bool = False) T[ソース]

Make a vertical line from the current point the provided distance

パラメータ:
  • distance (float) --

    1. distance from current point

  • self (T) --

  • forConstruction (bool) --

戻り値:

the Workplane object with the current point at the end of the new line

戻り値の型:

T

vLineTo(yCoord: float, forConstruction: bool = False) T[ソース]

Make a vertical line from the current point to the provided y coordinate.

Useful if it is more convenient to specify the end location rather than distance, as in vLine()

パラメータ:
  • yCoord (float) -- y coordinate for the end of the line

  • self (T) --

  • forConstruction (bool) --

戻り値:

the Workplane object with the current point at the end of the new line

戻り値の型:

T

val() Union[Vector, Location, Shape, Sketch][ソース]

Return the first value on the stack. If no value is present, current plane origin is returned.

戻り値:

the first value on the stack.

戻り値の型:

A CAD primitive

vals() List[Union[Vector, Location, Shape, Sketch]][ソース]

get the values in the current list

戻り値の型:

list of occ_impl objects

戻り値:

the values of the objects on the stack.

Contrast with all(), which returns CQ objects for all of the items on the stack

vertices(selector: Optional[Union[str, Selector]] = None, tag: Optional[str] = None) T[ソース]

Select the vertices of objects on the stack, optionally filtering the selection. If there are multiple objects on the stack, the vertices of all objects are collected and a list of all the distinct vertices is returned.

パラメータ:
  • selector (Optional[Union[str, Selector]]) -- optional Selector object, or string selector expression (see StringSyntaxSelector)

  • tag (Optional[str]) -- if set, search the tagged object instead of self

  • self (T) --

戻り値:

a CQ object whose stack contains the distinct vertices of all objects on the current stack, after being filtered by the selector, if provided

戻り値の型:

T

If there are no vertices for any objects on the current stack, an empty CQ object is returned

The typical use is to select the vertices of a single object on the stack. For example:

Workplane().box(1, 1, 1).faces("+Z").vertices().size()

returns 4, because the topmost face of a cube will contain four vertices. While this:

Workplane().box(1, 1, 1).faces().vertices().size()

returns 8, because a cube has a total of 8 vertices

Note Circles are peculiar, they have a single vertex at the center!

wedge(dx: float, dy: float, dz: float, xmin: float, zmin: float, xmax: float, zmax: float, pnt: ~typing.Union[~typing.Tuple[float, float], ~typing.Tuple[float, float, float], ~cadquery.occ_impl.geom.Vector] = Vector: (0.0, 0.0, 0.0), dir: ~typing.Union[~typing.Tuple[float, float], ~typing.Tuple[float, float, float], ~cadquery.occ_impl.geom.Vector] = Vector: (0.0, 0.0, 1.0), centered: ~typing.Union[bool, ~typing.Tuple[bool, bool, bool]] = True, combine: ~typing.Union[bool, ~typing.Literal['cut', 'a', 's']] = True, clean: bool = True) T[ソース]

Returns a 3D wedge with the specified dimensions for each point on the stack.

パラメータ:
  • dx (float) -- Distance along the X axis

  • dy (float) -- Distance along the Y axis

  • dz (float) -- Distance along the Z axis

  • xmin (float) -- The minimum X location

  • zmin (float) -- The minimum Z location

  • xmax (float) -- The maximum X location

  • zmax (float) -- The maximum Z location

  • pnt (Union[Tuple[float, float], Tuple[float, float, float], Vector]) -- A vector (or tuple) for the origin of the direction for the wedge

  • dir (Union[Tuple[float, float], Tuple[float, float, float], Vector]) -- The direction vector (or tuple) for the major axis of the wedge

  • centered (Union[bool, Tuple[bool, bool, bool]]) -- If True, the wedge will be centered around the reference point. If False, the corner of the wedge will be on the reference point and it will extend in the positive x, y and z directions. Can also use a 3-tuple to specify centering along each axis.

  • combine (Union[bool, Literal['cut', 'a', 's']]) -- Whether the results should be combined with other solids on the stack (and each other)

  • clean (bool) -- True to attempt to have the kernel clean up the geometry, False otherwise

  • self (T) --

戻り値:

A wedge object for each point on the stack

戻り値の型:

T

One wedge is created for each item on the current stack. If no items are on the stack, one wedge using the current workplane center is created.

If combine is True, the result will be a single object on the stack. If a solid was found in the chain, the result is that solid with all wedges produced fused onto it otherwise, the result is the combination of all the produced wedges.

If combine is False, the result will be a list of the wedges produced.

wire(forConstruction: bool = False) T[ソース]

Returns a CQ object with all pending edges connected into a wire.

All edges on the stack that can be combined will be combined into a single wire object, and other objects will remain on the stack unmodified. If there are no pending edges, this method will just return self.

パラメータ:
  • forConstruction (bool) -- whether the wire should be used to make a solid, or if it is just for reference

  • self (T) --

戻り値の型:

T

This method is primarily of use to plugin developers making utilities for 2D construction. This method should be called when a user operation implies that 2D construction is finished, and we are ready to begin working in 3d.

SEE '2D construction concepts' for a more detailed explanation of how CadQuery handles edges, wires, etc.

Any non edges will still remain.

wires(selector: Optional[Union[str, Selector]] = None, tag: Optional[str] = None) T[ソース]

Select the wires of objects on the stack, optionally filtering the selection. If there are multiple objects on the stack, the wires of all objects are collected and a list of all the distinct wires is returned.

パラメータ:
  • selector (Optional[Union[str, Selector]]) -- optional Selector object, or string selector expression (see StringSyntaxSelector)

  • tag (Optional[str]) -- if set, search the tagged object instead of self

  • self (T) --

戻り値:

a CQ object whose stack contains all of the distinct wires of all objects on the current stack, filtered by the provided selector.

戻り値の型:

T

If there are no wires for any objects on the current stack, an empty CQ object is returned

The typical use is to select the wires of a single object on the stack. For example:

Workplane().box(1, 1, 1).faces("+Z").wires().size()

returns 1, because a face typically only has one outer wire

workplane(offset: float = 0.0, invert: bool = False, centerOption: Literal['CenterOfMass', 'ProjectedOrigin', 'CenterOfBoundBox'] = 'ProjectedOrigin', origin: Optional[Union[Tuple[float, float], Tuple[float, float, float], Vector]] = None) T[ソース]

Creates a new 2D workplane, located relative to the first face on the stack.

パラメータ:
  • offset (float) -- offset for the workplane in its normal direction . Default

  • invert (bool) -- invert the normal direction from that of the face.

  • centerOption (string or None='ProjectedOrigin') -- how local origin of workplane is determined.

  • origin (Optional[Union[Tuple[float, float], Tuple[float, float, float], Vector]]) -- origin for plane center, requires 'ProjectedOrigin' centerOption.

  • self (T) --

戻り値の型:

Workplane object

The first element on the stack must be a face, a set of co-planar faces or a vertex. If a vertex, then the parent item on the chain immediately before the vertex must be a face.

The result will be a 2D working plane with a new coordinate system set up as follows:

  • The centerOption parameter sets how the center is defined. Options are 'CenterOfMass', 'CenterOfBoundBox', or 'ProjectedOrigin'. 'CenterOfMass' and 'CenterOfBoundBox' are in relation to the selected face(s) or vertex (vertices). 'ProjectedOrigin' uses by default the current origin or the optional origin parameter (if specified) and projects it onto the plane defined by the selected face(s).

  • The Z direction will be the normal of the face, computed at the center point.

  • The X direction will be parallel to the x-y plane. If the workplane is parallel to the global x-y plane, the x direction of the workplane will co-incide with the global x direction.

Most commonly, the selected face will be planar, and the workplane lies in the same plane of the face ( IE, offset=0). Occasionally, it is useful to define a face offset from an existing surface, and even more rarely to define a workplane based on a face that is not planar.

workplaneFromTagged(name: str) Workplane[ソース]

Copies the workplane from a tagged parent.

パラメータ:

name (str) -- tag to search for

戻り値:

a CQ object with name's workplane

戻り値の型:

Workplane

cadquery.sortWiresByBuildOrder(wireList: List[Wire]) List[List[Wire]][ソース]

Tries to determine how wires should be combined into faces.

Assume:

The wires make up one or more faces, which could have 'holes' Outer wires are listed ahead of inner wires there are no wires inside wires inside wires ( IE, islands -- we can deal with that later on ) none of the wires are construction wires

Compute:

one or more sets of wires, with the outer wire listed first, and inner ones

Returns, list of lists.

パラメータ:

wireList (List[Wire]) --

戻り値の型:

List[List[Wire]]

class cadquery.occ_impl.shapes.Mixin1D[ソース]

ベースクラス: object

endPoint() Vector[ソース]
戻り値:

a vector representing the end point of this edge.

パラメータ:

self (Mixin1DProtocol) --

戻り値の型:

Vector

Note, circles may have the start and end points the same

locationAt(d: float, mode: Literal['length', 'parameter'] = 'length', frame: Literal['frenet', 'corrected'] = 'frenet', planar: bool = False) Location[ソース]

Generate a location along the underlying curve.

パラメータ:
  • d (float) -- distance or parameter value

  • mode (Literal['length', 'parameter']) -- position calculation mode (default: length)

  • frame (Literal['frenet', 'corrected']) -- moving frame calculation method (default: frenet)

  • planar (bool) -- planar mode

  • self (Mixin1DProtocol) --

戻り値:

A Location object representing local coordinate system at the specified distance.

戻り値の型:

Location

locations(ds: Iterable[float], mode: Literal['length', 'parameter'] = 'length', frame: Literal['frenet', 'corrected'] = 'frenet', planar: bool = False) List[Location][ソース]

Generate location along the curve

パラメータ:
  • ds (Iterable[float]) -- distance or parameter values

  • mode (Literal['length', 'parameter']) -- position calculation mode (default: length)

  • frame (Literal['frenet', 'corrected']) -- moving frame calculation method (default: frenet)

  • planar (bool) -- planar mode

  • self (Mixin1DProtocol) --

戻り値:

A list of Location objects representing local coordinate systems at the specified distances.

戻り値の型:

List[Location]

normal() Vector[ソース]

Calculate the normal Vector. Only possible for planar curves.

戻り値:

normal vector

パラメータ:

self (Mixin1DProtocol) --

戻り値の型:

Vector

paramAt(d: float) float[ソース]

Compute parameter value at the specified normalized distance.

パラメータ:
  • d (float) -- normalized distance [0, 1]

  • self (Mixin1DProtocol) --

戻り値:

parameter value

戻り値の型:

float

positionAt(d: float, mode: Literal['length', 'parameter'] = 'length') Vector[ソース]

Generate a position along the underlying curve.

パラメータ:
  • d (float) -- distance or parameter value

  • mode (Literal['length', 'parameter']) -- position calculation mode (default: length)

  • self (Mixin1DProtocol) --

戻り値:

A Vector on the underlying curve located at the specified d value.

戻り値の型:

Vector

positions(ds: Iterable[float], mode: Literal['length', 'parameter'] = 'length') List[Vector][ソース]

Generate positions along the underlying curve

パラメータ:
  • ds (Iterable[float]) -- distance or parameter values

  • mode (Literal['length', 'parameter']) -- position calculation mode (default: length)

  • self (Mixin1DProtocol) --

戻り値:

A list of Vector objects.

戻り値の型:

List[Vector]

project(face: Face, d: Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]], closest: bool = True) Union[T1D, List[T1D]][ソース]

Project onto a face along the specified direction

パラメータ:
  • self (T1D) --

  • face (Face) --

  • d (Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]]) --

  • closest (bool) --

戻り値の型:

Union[T1D, List[T1D]]

radius() float[ソース]

Calculate the radius.

Note that when applied to a Wire, the radius is simply the radius of the first edge.

戻り値:

radius

例外:

ValueError -- if kernel can not reduce the shape to a circular edge

パラメータ:

self (Mixin1DProtocol) --

戻り値の型:

float

startPoint() Vector[ソース]
戻り値:

a vector representing the start point of this edge

パラメータ:

self (Mixin1DProtocol) --

戻り値の型:

Vector

Note, circles may have the start and end points the same

tangentAt(locationParam: float = 0.5, mode: Literal['length', 'parameter'] = 'length') Vector[ソース]

Compute tangent vector at the specified location.

パラメータ:
  • locationParam (float) -- distance or parameter value (default: 0.5)

  • mode (Literal['length', 'parameter']) -- position calculation mode (default: parameter)

  • self (Mixin1DProtocol) --

戻り値:

tangent vector

戻り値の型:

Vector

class cadquery.occ_impl.shapes.Mixin3D[ソース]

ベースクラス: object

chamfer(length: float, length2: Optional[float], edgeList: Iterable[Edge]) Any[ソース]

Chamfers the specified edges of this solid.

パラメータ:
  • length (float) -- length > 0, the length (length) of the chamfer

  • length2 (Optional[float]) -- length2 > 0, optional parameter for asymmetrical chamfer. Should be None if not required.

  • edgeList (Iterable[Edge]) -- a list of Edge objects, which must belong to this solid

  • self (Any) --

戻り値:

Chamfered solid

戻り値の型:

Any

dprism(basis: Optional[Face], profiles: List[Wire], depth: Optional[Union[float, int]] = None, taper: Union[float, int] = 0, upToFace: Optional[Face] = None, thruAll: bool = True, additive: bool = True) Solid[ソース]
dprism(basis: Optional[Face], faces: List[Face], depth: Optional[Union[float, int]] = None, taper: Union[float, int] = 0, upToFace: Optional[Face] = None, thruAll: bool = True, additive: bool = True) Solid

Make a prismatic feature (additive or subtractive)

パラメータ:
  • basis (Optional[Face]) -- face to perform the operation on

  • profiles (List[Wire]) -- list of profiles

  • depth (Optional[Union[float, int]]) -- depth of the cut or extrusion

  • upToFace (Optional[Face]) -- a face to extrude until

  • thruAll (bool) -- cut thruAll

  • self (TS) --

  • taper (Union[float, int]) --

  • additive (bool) --

戻り値:

a Solid object

戻り値の型:

Solid

fillet(radius: float, edgeList: Iterable[Edge]) Any[ソース]

Fillets the specified edges of this solid.

パラメータ:
  • radius (float) -- float > 0, the radius of the fillet

  • edgeList (Iterable[Edge]) -- a list of Edge objects, which must belong to this solid

  • self (Any) --

戻り値:

Filleted solid

戻り値の型:

Any

isInside(point: Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]], tolerance: float = 1e-06) bool[ソース]

Returns whether or not the point is inside a solid or compound object within the specified tolerance.

パラメータ:
  • point (Union[Vector, Tuple[Union[int, float], Union[int, float]], Tuple[Union[int, float], Union[int, float], Union[int, float]]]) -- tuple or Vector representing 3D point to be tested

  • tolerance (float) -- tolerance for inside determination, default=1.0e-6

  • self (ShapeProtocol) --

戻り値:

bool indicating whether or not point is within solid

戻り値の型:

bool

shell(faceList: Optional[Iterable[Face]], thickness: float, tolerance: float = 0.0001, kind: Literal['arc', 'intersection'] = 'arc') Any[ソース]

Make a shelled solid of self.

パラメータ:
  • faceList (Optional[Iterable[Face]]) -- List of faces to be removed, which must be part of the solid. Can be an empty list.

  • thickness (float) -- Floating point thickness. Positive shells outwards, negative shells inwards.

  • tolerance (float) -- Modelling tolerance of the method, default=0.0001.

  • self (Any) --

  • kind (Literal['arc', 'intersection']) --

戻り値:

A shelled solid.

戻り値の型:

Any

Copyright (C) 2011-2015 Parametric Products Intellectual Holdings, LLC

This file is part of CadQuery.

CadQuery is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version.

CadQuery is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with this library; If not, see <http://www.gnu.org/licenses/>

class cadquery.selectors.AndSelector(left, right)[ソース]

ベースクラス: BinarySelector

Intersection selector. Returns objects that is selected by both selectors.

class cadquery.selectors.AreaNthSelector(n: int, directionMax: bool = True, tolerance: float = 0.0001)[ソース]

ベースクラス: _NthSelector

Selects the object(s) with Nth area

Applicability:
  • Faces, Shells, Solids - Shape.Area() is used to compute area

  • closed planar Wires - a temporary face is created to compute area

Will ignore non-planar or non-closed wires.

Among other things can be used to select one of the nested coplanar wires or faces.

For example to create a fillet on a shank:

result = (
    cq.Workplane("XY")
    .circle(5)
    .extrude(2)
    .circle(2)
    .extrude(10)
    .faces(">Z[-2]")
    .wires(AreaNthSelector(0))
    .fillet(2)
)

Or to create a lip on a case seam:

result = (
    cq.Workplane("XY")
    .rect(20, 20)
    .extrude(10)
    .edges("|Z or <Z")
    .fillet(2)
    .faces(">Z")
    .shell(2)
    .faces(">Z")
    .wires(AreaNthSelector(-1))
    .toPending()
    .workplane()
    .offset2D(-1)
    .extrude(1)
    .faces(">Z[-2]")
    .wires(AreaNthSelector(0))
    .toPending()
    .workplane()
    .cutBlind(2)
)
パラメータ:
  • n (int) --

  • directionMax (bool) --

  • tolerance (float) --

key(obj: Shape) float[ソース]

Return the key for ordering. Can raise a ValueError if obj can not be used to create a key, which will result in obj being dropped by the clustering method.

パラメータ:

obj (Shape) --

戻り値の型:

float

class cadquery.selectors.BaseDirSelector(vector: Vector, tolerance: float = 0.0001)[ソース]

ベースクラス: Selector

単一の方向ベクトルに基づく選択を処理するセレクタ。

パラメータ:
  • vector (Vector) --

  • tolerance (float) --

filter(objectList: Sequence[Shape]) List[Shape][ソース]

There are lots of kinds of filters, but for planes they are always based on the normal of the plane, and for edges on the tangent vector along the edge

パラメータ:

objectList (Sequence[Shape]) --

戻り値の型:

List[Shape]

test(vec: Vector) bool[ソース]

Test a specified vector. Subclasses override to provide other implementations

パラメータ:

vec (Vector) --

戻り値の型:

bool

class cadquery.selectors.BinarySelector(left, right)[ソース]

ベースクラス: Selector

Base class for selectors that operates with two other selectors. Subclass must implement the :filterResults(): method.

filter(objectList: Sequence[Shape])[ソース]

Filter the provided list.

The default implementation returns the original list unfiltered.

パラメータ:

objectList (list of OCCT primitives) -- list to filter

戻り値:

filtered list

class cadquery.selectors.BoxSelector(point0, point1, boundingbox=False)[ソース]

ベースクラス: Selector

2点で定義された3Dボックス内のオブジェクトを選択します。

If boundingbox is True only the objects that have their bounding box inside the given box is selected. Otherwise only center point of the object is tested.

Applicability: all types of shapes

Example:

CQ(aCube).edges(BoxSelector((0, 1, 0), (1, 2, 1)))
filter(objectList: Sequence[Shape])[ソース]

Filter the provided list.

The default implementation returns the original list unfiltered.

パラメータ:

objectList (list of OCCT primitives) -- list to filter

戻り値:

filtered list

class cadquery.selectors.CenterNthSelector(vector: Vector, n: int, directionMax: bool = True, tolerance: float = 0.0001)[ソース]

ベースクラス: _NthSelector

オブジェクトを、指定された方向に投影された中心からの距離によって決まる順序でリストにソートします。

Applicability:

All Shapes.

パラメータ:
  • vector (Vector) --

  • n (int) --

  • directionMax (bool) --

  • tolerance (float) --

key(obj: Shape) float[ソース]

Return the key for ordering. Can raise a ValueError if obj can not be used to create a key, which will result in obj being dropped by the clustering method.

パラメータ:

obj (Shape) --

戻り値の型:

float

class cadquery.selectors.DirectionMinMaxSelector(vector: Vector, directionMax: bool = True, tolerance: float = 0.0001)[ソース]

ベースクラス: CenterNthSelector

指定した方向に最も近い、または最も遠いオブジェクトを選択します。

Applicability:

All object types. for a vertex, its point is used. for all other kinds of objects, the center of mass of the object is used.

You can use the string shortcuts >(X|Y|Z) or <(X|Y|Z) if you want to select based on a cardinal direction.

For example this:

CQ(aCube).faces(DirectionMinMaxSelector((0, 0, 1), True))

Means to select the face having the center of mass farthest in the positive z direction, and is the same as:

CQ(aCube).faces(">Z")
パラメータ:
  • vector (Vector) --

  • directionMax (bool) --

  • tolerance (float) --

class cadquery.selectors.DirectionNthSelector(vector: Vector, n: int, directionMax: bool = True, tolerance: float = 0.0001)[ソース]

ベースクラス: ParallelDirSelector, CenterNthSelector

Filters for objects parallel (or normal) to the specified direction then returns the Nth one.

Applicability:

Linear Edges Planar Faces

パラメータ:
  • vector (Vector) --

  • n (int) --

  • directionMax (bool) --

  • tolerance (float) --

filter(objectlist: Sequence[Shape]) List[Shape][ソース]

There are lots of kinds of filters, but for planes they are always based on the normal of the plane, and for edges on the tangent vector along the edge

パラメータ:

objectlist (Sequence[Shape]) --

戻り値の型:

List[Shape]

class cadquery.selectors.DirectionSelector(vector: Vector, tolerance: float = 0.0001)[ソース]

ベースクラス: BaseDirSelector

指定した方向に並んだオブジェクトを選択します。

Applicability:

Linear Edges Planar Faces

Use the string syntax shortcut +/-(X|Y|Z) if you want to select based on a cardinal direction.

Example:

CQ(aCube).faces(DirectionSelector((0, 0, 1)))

selects faces with the normal in the z direction, and is equivalent to:

CQ(aCube).faces("+Z")
パラメータ:
  • vector (Vector) --

  • tolerance (float) --

test(vec: Vector) bool[ソース]

Test a specified vector. Subclasses override to provide other implementations

パラメータ:

vec (Vector) --

戻り値の型:

bool

class cadquery.selectors.InverseSelector(selector)[ソース]

ベースクラス: Selector

Inverts the selection of given selector. In other words, selects all objects that is not selected by given selector.

filter(objectList: Sequence[Shape])[ソース]

Filter the provided list.

The default implementation returns the original list unfiltered.

パラメータ:

objectList (list of OCCT primitives) -- list to filter

戻り値:

filtered list

class cadquery.selectors.LengthNthSelector(n: int, directionMax: bool = True, tolerance: float = 0.0001)[ソース]

ベースクラス: _NthSelector

Select the object(s) with the Nth length

Applicability:

All Edge and Wire objects

パラメータ:
  • n (int) --

  • directionMax (bool) --

  • tolerance (float) --

key(obj: Shape) float[ソース]

Return the key for ordering. Can raise a ValueError if obj can not be used to create a key, which will result in obj being dropped by the clustering method.

パラメータ:

obj (Shape) --

戻り値の型:

float

class cadquery.selectors.NearestToPointSelector(pnt)[ソース]

ベースクラス: Selector

指定された点に最も近いオブジェクトを選択します。

If the object is a vertex or point, the distance is used. For other kinds of shapes, the center of mass is used to to compute which is closest.

Applicability: All Types of Shapes

Example:

CQ(aCube).vertices(NearestToPointSelector((0, 1, 0)))

returns the vertex of the unit cube closest to the point x=0,y=1,z=0

filter(objectList: Sequence[Shape])[ソース]

Filter the provided list.

The default implementation returns the original list unfiltered.

パラメータ:

objectList (list of OCCT primitives) -- list to filter

戻り値:

filtered list

class cadquery.selectors.ParallelDirSelector(vector: Vector, tolerance: float = 0.0001)[ソース]

ベースクラス: BaseDirSelector

指定した方向と平行なオブジェクトを選択します。

Applicability:

Linear Edges Planar Faces

Use the string syntax shortcut |(X|Y|Z) if you want to select based on a cardinal direction.

Example:

CQ(aCube).faces(ParallelDirSelector((0, 0, 1)))

selects faces with the normal parallel to the z direction, and is equivalent to:

CQ(aCube).faces("|Z")
パラメータ:
  • vector (Vector) --

  • tolerance (float) --

test(vec: Vector) bool[ソース]

Test a specified vector. Subclasses override to provide other implementations

パラメータ:

vec (Vector) --

戻り値の型:

bool

class cadquery.selectors.PerpendicularDirSelector(vector: Vector, tolerance: float = 0.0001)[ソース]

ベースクラス: BaseDirSelector

指定した方向と直交するオブジェクトを選択します。

Applicability:

Linear Edges Planar Faces

Use the string syntax shortcut #(X|Y|Z) if you want to select based on a cardinal direction.

Example:

CQ(aCube).faces(PerpendicularDirSelector((0, 0, 1)))

selects faces with the normal perpendicular to the z direction, and is equivalent to:

CQ(aCube).faces("#Z")
パラメータ:
  • vector (Vector) --

  • tolerance (float) --

test(vec: Vector) bool[ソース]

Test a specified vector. Subclasses override to provide other implementations

パラメータ:

vec (Vector) --

戻り値の型:

bool

class cadquery.selectors.RadiusNthSelector(n: int, directionMax: bool = True, tolerance: float = 0.0001)[ソース]

ベースクラス: _NthSelector

N 番目の半径を持つオブジェクトを選択します。

Applicability:

All Edge and Wires.

Will ignore any shape that can not be represented as a circle or an arc of a circle.

パラメータ:
  • n (int) --

  • directionMax (bool) --

  • tolerance (float) --

key(obj: Shape) float[ソース]

Return the key for ordering. Can raise a ValueError if obj can not be used to create a key, which will result in obj being dropped by the clustering method.

パラメータ:

obj (Shape) --

戻り値の型:

float

class cadquery.selectors.Selector[ソース]

ベースクラス: object

オブジェクトのリストにフィルタをかける。

Filters must provide a single method that filters objects.

filter(objectList: Sequence[Shape]) List[Shape][ソース]

Filter the provided list.

The default implementation returns the original list unfiltered.

パラメータ:

objectList (list of OCCT primitives) -- list to filter

戻り値:

filtered list

戻り値の型:

List[Shape]

class cadquery.selectors.StringSyntaxSelector(selectorString)[ソース]

ベースクラス: Selector

Filter lists objects using a simple string syntax. All of the filters available in the string syntax are also available ( usually with more functionality ) through the creation of full-fledged selector objects. see Selector and its subclasses

Filtering works differently depending on the type of object list being filtered.

パラメータ:

selectorString -- A two-part selector string, [selector][axis]

戻り値:

objects that match the specified selector

*Modifiers* are ('|','+','-','<','>','%')

|:

parallel to ( same as ParallelDirSelector ). Can return multiple objects.

#:

perpendicular to (same as PerpendicularDirSelector )

+:

positive direction (same as DirectionSelector )

-:

negative direction (same as DirectionSelector )

>:

maximize (same as DirectionMinMaxSelector with directionMax=True)

<:

minimize (same as DirectionMinMaxSelector with directionMax=False )

%:

curve/surface type (same as TypeSelector)

*axisStrings* are: X,Y,Z,XY,YZ,XZ or (x,y,z) which defines an arbitrary direction

It is possible to combine simple selectors together using logical operations. The following operations are supported

and:

Logical AND, e.g. >X and >Y

or:

Logical OR, e.g. |X or |Y

not:

Logical NOT, e.g. not #XY

exc(ept):

Set difference (equivalent to AND NOT): |X exc >Z

Finally, it is also possible to use even more complex expressions with nesting and arbitrary number of terms, e.g.

(not >X[0] and #XY) or >XY[0]

Selectors are a complex topic: see Selectors Reference for more information

filter(objectList: Sequence[Shape])[ソース]

Filter give object list through th already constructed complex selector object

パラメータ:

objectList (Sequence[Shape]) --

class cadquery.selectors.SubtractSelector(left, right)[ソース]

ベースクラス: BinarySelector

Difference selector. Subtract results of a selector from another selectors results.

class cadquery.selectors.SumSelector(left, right)[ソース]

ベースクラス: BinarySelector

Union selector. Returns the sum of two selectors results.

class cadquery.selectors.TypeSelector(typeString: str)[ソース]

ベースクラス: Selector

所定のジオメトリタイプを持つオブジェクトを選択します。

Applicability:

Faces: PLANE, CYLINDER, CONE, SPHERE, TORUS, BEZIER, BSPLINE, REVOLUTION, EXTRUSION, OFFSET, OTHER Edges: LINE, CIRCLE, ELLIPSE, HYPERBOLA, PARABOLA, BEZIER, BSPLINE, OFFSET, OTHER

You can use the string selector syntax. For example this:

CQ(aCube).faces(TypeSelector("PLANE"))

will select 6 faces, and is equivalent to:

CQ(aCube).faces("%PLANE")
パラメータ:

typeString (str) --

filter(objectList: Sequence[Shape]) List[Shape][ソース]

Filter the provided list.

The default implementation returns the original list unfiltered.

パラメータ:

objectList (list of OCCT primitives) -- list to filter

戻り値:

filtered list

戻り値の型:

List[Shape]

cadquery.occ_impl.exporters.assembly.exportAssembly(assy: AssemblyProtocol, path: str, mode: Literal['default', 'fused'] = 'default', **kwargs) bool[ソース]

Export an assembly to a STEP file.

kwargs is used to provide optional keyword arguments to configure the exporter.

パラメータ:
  • assy (AssemblyProtocol) -- assembly

  • path (str) -- Path and filename for writing

  • mode (Literal['default', 'fused']) -- STEP export mode. The options are "default", and "fused" (a single fused compound). It is possible that fused mode may exhibit low performance.

  • fuzzy_tol (float) -- OCCT fuse operation tolerance setting used only for fused assembly export.

  • glue (bool) -- Enable gluing mode for improved performance during fused assembly export. This option should only be used for non-intersecting shapes or those that are only touching or partially overlapping. Note that when glue is enabled, the resulting fused shape may be invalid if shapes are intersecting in an incompatible way. Defaults to False.

  • write_pcurves (bool) -- Enable or disable writing parametric curves to the STEP file. Default True. If False, writes STEP file without pcurves. This decreases the size of the resulting STEP file.

  • precision_mode (int) -- Controls the uncertainty value for STEP entities. Specify -1, 0, or 1. Default 0. See OCCT documentation.

戻り値の型:

bool

cadquery.occ_impl.exporters.assembly.exportCAF(assy: AssemblyProtocol, path: str) bool[ソース]

Export an assembly to a OCAF xml file (internal OCCT format).

パラメータ:
  • assy (AssemblyProtocol) --

  • path (str) --

戻り値の型:

bool

cadquery.occ_impl.exporters.assembly.exportGLTF(assy: AssemblyProtocol, path: str, binary: Optional[bool] = None, tolerance: float = 0.001, angularTolerance: float = 0.1)[ソース]

Export an assembly to a gltf file.

パラメータ:
  • assy (AssemblyProtocol) --

  • path (str) --

  • binary (Optional[bool]) --

  • tolerance (float) --

  • angularTolerance (float) --

cadquery.occ_impl.exporters.assembly.exportVRML(assy: AssemblyProtocol, path: str, tolerance: float = 0.001, angularTolerance: float = 0.1)[ソース]

Export an assembly to a vrml file using vtk.

パラメータ:
  • assy (AssemblyProtocol) --

  • path (str) --

  • tolerance (float) --

  • angularTolerance (float) --

cadquery.occ_impl.exporters.assembly.exportVTKJS(assy: AssemblyProtocol, path: str)[ソース]

Export an assembly to a zipped vtkjs. NB: .zip extensions is added to path.

パラメータ:
  • assy (AssemblyProtocol) --

  • path (str) --

cadquery.occ_impl.assembly.toJSON(assy: AssemblyProtocol, color: Tuple[float, float, float, float] = (1.0, 1.0, 1.0, 1.0), tolerance: float = 0.001) List[Dict[str, Any]][ソース]

Export an object to a structure suitable for converting to VTK.js JSON.

パラメータ:
  • assy (AssemblyProtocol) --

  • color (Tuple[float, float, float, float]) --

  • tolerance (float) --

戻り値の型:

List[Dict[str, Any]]

class cadquery.occ_impl.exporters.dxf.DxfDocument(dxfversion: str = 'AC1027', setup: Union[bool, List[str]] = False, doc_units: int = 4, *, metadata: Optional[Dict[str, str]] = None, approx: Optional[Literal['spline', 'arc']] = None, tolerance: float = 0.001)[ソース]

Create DXF document from CadQuery objects.

A wrapper for ezdxf providing methods for converting cadquery.Workplane objects to DXF entities.

The ezdxf document is available as the property document, allowing most features of ezdxf to be utilised directly.

Example usage

Single layer DXF document
rectangle = cq.Workplane().rect(10, 20)

dxf = DxfDocument()
dxf.add_shape(rectangle)
dxf.document.saveas("rectangle.dxf")
Multilayer DXF document
rectangle = cq.Workplane().rect(10, 20)
circle = cq.Workplane().circle(3)

dxf = DxfDocument()
dxf = (
    dxf.add_layer("layer_1", color=2)
    .add_layer("layer_2", color=3)
    .add_shape(rectangle, "layer_1")
    .add_shape(circle, "layer_2")
)
dxf.document.saveas("rectangle-with-hole.dxf")
パラメータ:
  • dxfversion (str) --

  • setup (Union[bool, List[str]]) --

  • doc_units (int) --

  • metadata (Optional[Dict[str, str]]) --

  • approx (Optional[Literal['spline', 'arc']]) --

  • tolerance (float) --

__init__(dxfversion: str = 'AC1027', setup: Union[bool, List[str]] = False, doc_units: int = 4, *, metadata: Optional[Dict[str, str]] = None, approx: Optional[Literal['spline', 'arc']] = None, tolerance: float = 0.001)[ソース]

Initialize DXF document.

パラメータ:
  • dxfversion (str) -- DXF version specifier as string, default is "AC1027" respectively "R2013"

  • setup (Union[bool, List[str]]) -- setup default styles, False for no setup, True to set up everything or a list of topics as strings, e.g. ["linetypes", "styles"] refer to ezdxf.new().

  • doc_units (int) -- ezdxf document/modelspace units

  • metadata (Optional[Dict[str, str]]) -- document metadata a dictionary of name value pairs

  • approx (Optional[Literal['spline', 'arc']]) --

    Approximation strategy for converting cadquery.Workplane objects to DXF entities:

    None

    no approximation applied

    "spline"

    all splines approximated as cubic splines

    "arc"

    all curves approximated as arcs and straight segments

  • tolerance (float) -- Approximation tolerance for converting cadquery.Workplane objects to DXF entities.

add_layer(name: str, *, color: int = 7, linetype: str = 'CONTINUOUS') Self[ソース]

Create a layer definition

Refer to ezdxf layers and ezdxf layer tutorial.

パラメータ:
  • name (str) -- layer definition name

  • color (int) -- color index. Standard colors include: 1 red, 2 yellow, 3 green, 4 cyan, 5 blue, 6 magenta, 7 white/black

  • linetype (str) -- ezdxf line type

戻り値の型:

Self

add_shape(workplane: Workplane, layer: str = '') Self[ソース]

Add CadQuery shape to a DXF layer.

パラメータ:
  • workplane (Workplane) -- CadQuery Workplane

  • layer (str) -- layer definition name

戻り値の型:

Self